Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 142(47): 19830-19834, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33124823

RESUMO

Brasilane-type sesquiterpenes have been known for a long time, but their biosynthetic pathways and mechanisms remain elusive. Recently, two groups independently characterized a Trichoderma terpene cyclase that produces trichobrasilenol, a brasilane-type sesquiterpene, and a plausible biosynthetic pathway was proposed based on isotopic labeling experiments. In the proposed mechanism, the characteristic brasilane-type 5/6 bicyclic skeleton is synthesized from a 5/7/3 tricyclic intermediate via a complicated concerted reaction, including six chemical events of C-C σ bond metathesis and rearrangements, ring-contraction, π bond formation, and regioselective hydroxylation. However, our density functional theory (DFT) calculations do not support this mechanism. On the basis of DFT calculations, we propose a new pathway for trichobrasilenol biosynthesis, involving a multistep carbocation cascade in which cyclopropylcarbinyl cations in equilibrium with homoallyl cations play a pivotal role. This pathway and mechanism is in good agreement with previous biosynthetic studies on brasilane-type compounds and related terpenoids, including isotope-labeling experiments and byproducts analysis.


Assuntos
Teoria da Densidade Funcional , Sesquiterpenos/química , Alquil e Aril Transferases/metabolismo , Ciclização , Sesquiterpenos/metabolismo , Estereoisomerismo , Termodinâmica , Trichoderma/metabolismo
3.
Nat Commun ; 11(1): 2134, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358541

RESUMO

Diatomic carbon (C2) is historically an elusive chemical species. It has long been believed that the generation of C2 requires extremely high physical energy, such as an electric carbon arc or multiple photon excitation, and so it has been the general consensus that the inherent nature of C2 in the ground state is experimentally inaccessible. Here, we present the chemical synthesis of C2 from a hypervalent alkynyl-λ3-iodane in a flask at room temperature or below, providing experimental evidence to support theoretical predictions that C2 has a singlet biradical character with a quadruple bond, thus settling a long-standing controversy between experimental and theoretical chemists, and that C2 serves as a molecular element in the bottom-up chemical synthesis of nanocarbons such as graphite, carbon nanotubes, and C60.

4.
Front Chem ; 8: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117863

RESUMO

Stannylation of calcium carbide followed by Sn-hypervalent iodine(III) exchange reaction cleanly afforded the electrophilic ethynylating agent ethynyl(phenyl)-λ3-iodane in high yield. This two-step method uses very inexpensive materials and is readily operable without any special precautions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...