Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 205: 626-637, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35183601

RESUMO

The rational design of sound absorption boards made of wood materials is an exciting area of research. This article describes a simple and inexpensive method to increase the sound absorptions capacity of Malas hardwood (Homalium foetidum Roxb.) using ammonium persulfate treatment. The reaction parameters such as the concentration of ammonium persulfate and reaction time were optimized. The results of X-ray photoelectron spectroscopy, X-ray diffraction, attenuated total reflectance-Fourier transforms infrared spectroscopy, and scanning electron microscopy demonstrated that ammonium persulfate could significantly affect carbohydrate polymers and lignin of wood by improving oxygen functionalities. The quantitative analysis of carbohydrate polymers (hemicellulose and cellulose) and lignin were evaluated. These changes in carbohydrate polymers and lignin enhanced the air permeability (83.6%) and average sound absorption coefficient at each frequency range 500-1000 Hz (2.6%), 1000-2000 Hz (4.9%), 2000-4000 Hz (17.4%), and overall 500-6400 Hz (20.8%) compared to the control samples. These results could be beneficial for new research and wood-based sound absorption materials to regulate the acoustic environment in houses.


Assuntos
Lignina , Madeira , Sulfato de Amônio , Carboidratos/análise , Lignina/análise , Polímeros/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Madeira/química
2.
Toxics ; 9(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204502

RESUMO

Nowadays, arsenic (III) contamination of drinking water is a global issue. Laboratory and instrument-based techniques are typically used to detect arsenic in water, with an accuracy of 1 ppb. However, such detection methods require a laboratory-based environment, skilled labor, and additional costs for setup. As a result, several metal-based nanoparticles have been studied to prepare a cost-effective and straightforward detector for arsenic (III) ions. Among the developed strategies, colorimetric detection is one of the simplest methods to detect arsenic (III) in water. Several portable digital detection technologies make nanoparticle-based colorimetric detectors useful for on-site arsenic detection. The present review showcases several metal-based nanoparticles that can detect arsenic (III) colorimetrically at a concentration of ~0.12 ppb or lower in water. A literature survey suggests that biomolecule-based metal nanoparticles could serve as low-cost, facile, susceptible, and eco-friendly alternatives for detecting arsenic (III). This review also describes future directions, perspectives and challenges in developing this alternative technology, which will help us reach a new milestone in designing an effective arsenic detector for commercial use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...