Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 7(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28855394

RESUMO

Using transgenic RNAi technology, we have screened over 4000 genes to identify targets to inhibit malignant growth caused by the loss of function of lethal(3)malignant brain tumour in Drosophila in vivo We have identified 131 targets, which belong to a wide range of gene ontologies. Most of these target genes are not significantly overexpressed in mbt tumours hence showing that, rather counterintuitively, tumour-linked overexpression is not a good predictor of functional requirement. Moreover, we have found that most of the genes upregulated in mbt tumours remain overexpressed in tumour-suppressed double-mutant conditions, hence revealing that most of the tumour transcriptome signature is not necessarily correlated with malignant growth. One of the identified target genes is meiotic W68 (mei-W68), the Drosophila orthologue of the human cancer/testis gene Sporulation-specific protein 11 (SPO11), the enzyme that catalyses the formation of meiotic double-strand breaks. We show that Drosophila mei-W68/SPO11 drives oncogenesis by causing DNA damage in a somatic tissue, hence providing the first instance in which a SPO11 orthologue is unequivocally shown to have a pro-tumoural role. Altogether, the results from this screen point to the possibility of investigating the function of human cancer relevant genes in a tractable experimental model organism like Drosophila.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Drosophila/genética , Endodesoxirribonucleases/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Dano ao DNA , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Endodesoxirribonucleases/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino
2.
BMC Genomics ; 13: 76, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22336141

RESUMO

BACKGROUND: Although sexual reproduction is dominant within eukaryotes, asexual reproduction is widespread and has evolved independently as a derived trait in almost all major taxa. How asexuality evolved in sexual organisms is unclear. Aphids, such as Acyrthosiphon pisum, alternate between asexual and sexual reproductive means, as the production of parthenogenetic viviparous females or sexual oviparous females and males varies in response to seasonal photoperiodism. Consequently, sexual and asexual development in aphids can be analyzed simultaneously in genetically identical individuals. RESULTS: We compared the transcriptomes of aphid embryos in the stages of development during which the trajectory of oogenesis is determined for producing sexual or asexual gametes. This study design aimed at identifying genes involved in the onset of the divergent mechanisms that result in the sexual or asexual phenotype. We detected 33 genes that were differentially transcribed in sexual and asexual embryos. Functional annotation by gene ontology (GO) showed a biological signature of oogenesis, cell cycle regulation, epigenetic regulation and RNA maturation. In situ hybridizations demonstrated that 16 of the differentially-transcribed genes were specifically expressed in germ cells and/or oocytes of asexual and/or sexual ovaries, and therefore may contribute to aphid oogenesis. We categorized these 16 genes by their transcription patterns in the two types of ovaries; they were: i) expressed during sexual and asexual oogenesis; ii) expressed during sexual and asexual oogenesis but with different localizations; or iii) expressed only during sexual or asexual oogenesis. CONCLUSIONS: Our results show that asexual and sexual oogenesis in aphids share common genetic programs but diverge by adapting specificities in their respective gene expression profiles in germ cells and oocytes.


Assuntos
Afídeos/genética , Expressão Gênica , Genes de Insetos , Oogênese/genética , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Ovário/metabolismo , Transporte de RNA , Reprodução/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...