Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 379(6634): eabo0431, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36264828

RESUMO

The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation. Noble gas concentrations are higher than those in Ivuna-type carbonaceous (CI) chondrite meteorites. Several host phases of isotopically distinct nitrogen have different abundances among the samples. Our measurements support a close relationship between Ryugu and CI chondrites. Noble gases produced by galactic cosmic rays, indicating a ~5 million year exposure, and from implanted solar wind record the recent irradiation history of Ryugu after it migrated to its current orbit.

2.
ACS Omega ; 7(49): 44670-44676, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530237

RESUMO

We report a method to synthesize dolomite [CaMg(CO3)2] from amorphous calcium magnesium carbonate (ACMC) via solid-state transformation. When ACMC is heated in air, it does not crystallize into dolomite but decomposes into Mg calcite, magnesium oxide, and CO2. Hence, we heated ACMC in a closed system filled with CO2 gas (pCO2 >1.2 bar at 420 °C) and produced submicron-sized dolomite. Single-phase dolomite was obtained after dissolving impurities in the run products, such as northupite [Na3Mg(CO3)2Cl] and eitelite [Na2Mg(CO3)2], in water. Also, we investigated the crystallization process of dolomite by changing the heating temperature and heating time. Despite crystallization by solid-state transformation, the heated samples crystallized to dolomite via Ca-rich protodolomite with no ordering reflection of X-ray diffraction as previously observed for hydrothermal synthesis. The results demonstrated that this crystallization pathway is kinetically favored even in solid-state transformation and that the Ca-rich protodolomite phase preferentially crystallizes during heating, leading to phase separation from the amorphous phase. Therefore, the crystallization process via protodolomite as a precursor is a common mechanism in dolomite crystallization, suggesting the presence of kinetic barriers other than hydration of cations.

3.
Sci Adv ; 8(46): eabo7239, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36264781

RESUMO

The Hayabusa2 spacecraft returned to Earth from the asteroid 162173 Ryugu on 6 December 2020. One day after the recovery, the gas species retained in the sample container were extracted and measured on-site and stored in gas collection bottles. The container gas consists of helium and neon with an extraterrestrial 3He/4He and 20Ne/22Ne ratios, along with some contaminant terrestrial atmospheric gases. A mixture of solar and Earth's atmospheric gas is the best explanation for the container gas composition. Fragmentation of Ryugu grains within the sample container is discussed on the basis of the estimated amount of indigenous He and the size distribution of the recovered Ryugu grains. This is the first successful return of gas species from a near-Earth asteroid.

4.
Science ; 333(6046): 1116-9, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21868668

RESUMO

Meteorite studies suggest that each solar system object has a unique oxygen isotopic composition. Chondrites, the most primitive of meteorites, have been believed to be derived from asteroids, but oxygen isotopic compositions of asteroids themselves have not been established. We measured, using secondary ion mass spectrometry, oxygen isotopic compositions of rock particles from asteroid 25143 Itokawa returned by the Hayabusa spacecraft. Compositions of the particles are depleted in (16)O relative to terrestrial materials and indicate that Itokawa, an S-type asteroid, is one of the sources of the LL or L group of equilibrated ordinary chondrites. This is a direct oxygen-isotope link between chondrites and their parent asteroid.

5.
Nature ; 434(7033): 619-22, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15800617

RESUMO

The discovery in primitive components of meteorites of large oxygen isotopic variations that could not be attributed to mass-dependent fractionation effects has raised a fundamental question: what is the composition of the protosolar gas from which the host grains formed? This composition is probably preserved in the outer layers of the Sun, but the resolution of astronomical spectroscopic measurements is still too poor to be useful for comparison with planetary material. Here we report a precise determination of the oxygen isotopic composition of the solar wind from particles implanted in the outer hundreds of nanometres of metallic grains in the lunar regolith. These layers of the grains are enriched in 16O by >20 +/- 4 per thousand relative to the Earth, Mars and bulk meteorites, which implies the existence in the solar accretion disk of reactions--as yet unknown--that were able to change the 17O/16O and 18O/16O ratios in a way that was not dependent strictly on the mass of the isotope. Photochemical self-shielding of the CO gas irradiated by ultraviolet light may be one of these key processes, because it depends on the abundance of the isotopes, rather than their masses.


Assuntos
Meio Ambiente Extraterreno/química , Isótopos de Oxigênio/análise , Isótopos de Oxigênio/química , Sistema Solar , Monóxido de Carbono/análise , Monóxido de Carbono/química , Metais/análise , Metais/química , Meteoroides , Fotoquímica , Planetas , Atividade Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...