Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37922146

RESUMO

Considering the superior capacitive performance and rich redox kinetics, the two-dimensional (2D) layered molybdenum disulfide (MoS2) and transition metal nitrides (TMNs) have emerged as the latest set of nanomaterials. Direct incorporation of key materials vanadium nitride (VN) and tungsten nitride (W2N) into a MoS2 array has been achieved on cost-effective, bendable stainless steel (SS) foil via a reactive cosputtering route. Herein, we have utilized the synergistic effect of intermixed nanohybrids to develop a flexible asymmetric supercapacitor (FASC) device from MoS2-VN@SS (negative) and MoS2-W2N@SS (positive) electrodes. As-constructed FASC cell possesses a maximum operational potential of 1.80 V and an exceptional gravimetric capacitance of 200 F g-1 at a sweep rate of 5 mV s-1. The sustained capacitive performance mainly accounts for the synergism induced through unique interfacial surface architecture provided by MoS2 nanoworms and TMN conductive hosts. The sulfur and nitrogen edges ensure the transport channels to Li+/SO4-2 ions for intercalation/deintercalation into the composite nanostructured thin film, further promoting the pseudocapacitive behavior. Consequently, the supercapacitor cell exhibits a distinctive specific energy of 87.91 Wh kg-1 at 0.87 kW kg-1 specific power and a reduced open circuit potential (OCP) decay rate (∼42% self-discharge after 60 min). Moreover, the assembled flexible device exhibits nearly unperturbed electrochemical response even at bending at 165° angle and illustrates a commendable cyclic life-span of 82% after 20,000 charge-discharge cycles, elucidating advanced mechanical robustness and capacitance retentivity. The powering of a multicolor light-emitting diode (LED) and electronic digital watch facilitates the practical evidence to open up possibilities in next-generation state-of-the-art wearable and miniaturized energy storage systems.

2.
Nanotechnology ; 28(2): 025401, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27924781

RESUMO

The development of low cost supercapacitor cells with unique capacitive properties is essential for many domestic and industrial purposes. Here we report the first ever application of SnS2-reduced graphene oxide (SnS2/RGO) layered nanocomposite as a superior electrode material for symmetric aqueous hybrid supercapacitors. We synthesized SnS2/RGO nanocomposite comprised of nanosheets of SnS2 and graphene oxide via a one-pot hydrothermal approach. in situ as-synthesized SnS2/RGO is devised for the first time to give high specific capacitance 500 Fg-1, energy density 16.67 Wh kg-1 and power density 488 W kg-1. The cell retains 95% charge/discharge cycle stability up to 1000 cycles. In-short, the SnS2/RGO nanosheet composite presented is a novel and advanced material for application in high stability moderate value hybrid supercapacitors. All the currently available surveys in literature state the potential applicability of SnS2 as the anode material for reversible lithium/sodium ion batteries (LIBs/NIBs) but there is a lack of equivalent studies on electrochemical capacitors. We filled up this knowledge gap by the use of the same material in a cost-effective, highly active hybrid supercapacitor application by utilizing its pseudocapacitance property combined with the layered capacitance property of graphene sheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...