Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 17058, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26593036

RESUMO

Protein phosphatase 5 is involved in the regulation of kinases and transcription factors. The dephosphorylation activity is modulated by the molecular chaperone Hsp90, which binds to the TPR-domain of protein phosphatase 5. This interaction is dependent on the C-terminal MEEVD motif of Hsp90. We show that C-terminal Hsp90 fragments differ in their regulation of the phosphatase activity hinting to a more complex interaction. Also hydrodynamic parameters from analytical ultracentrifugation and small-angle X-ray scattering data suggest a compact structure for the Hsp90-protein phosphatase 5 complexes. Using crosslinking experiments coupled with mass spectrometric analysis and structural modelling we identify sites, which link the middle/C-terminal domain interface of C. elegans Hsp90 to the phosphatase domain of the corresponding kinase. Studying the relevance of the domains of Hsp90 for turnover of native substrates we find that ternary complexes with the glucocorticoid receptor (GR) are cooperatively formed by full-length Hsp90 and PPH-5. Our data suggest that the direct stimulation of the phosphatase activity by C-terminal Hsp90 fragments leads to increased dephosphorylation rates. These are further modulated by the binding of clients to the N-terminal and middle domain of Hsp90 and their presentation to the phosphatase within the phosphatase-Hsp90 complex.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas Nucleares/química , Fosfoproteínas Fosfatases/química , Receptores de Glucocorticoides/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Biosci Rep ; 35(3)2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26182372

RESUMO

Protein phosphatase 5 (PP5) is an evolutionary conserved serine/threonine phosphatase. Its dephosphorylation activity modulates a diverse set of cellular factors including protein kinases and the microtubule-associated tau protein involved in neurodegenerative disorders. It is auto-regulated by its heat-shock protein (Hsp90)-interacting tetratricopeptide repeat (TPR) domain and its C-terminal α-helix. In the present study, we report the identification of five specific PP5 activators [PP5 small-molecule activators (P5SAs)] that enhance the phosphatase activity up to 8-fold. The compounds are allosteric modulators accelerating efficiently the turnover rate of PP5, but do barely affect substrate binding or the interaction between PP5 and the chaperone Hsp90. Enzymatic studies imply that the compounds bind to the phosphatase domain of PP5. For the most promising compound crystallographic comparisons of the apo PP5 and the PP5-P5SA-2 complex indicate a relaxation of the auto-inhibited state of PP5. Residual electron density and mutation analyses in PP5 suggest activator binding to a pocket in the phosphatase/TPR domain interface, which may exert regulatory functions. These compounds thus may expose regulatory mechanisms in the PP5 enzyme and serve to develop optimized activators based on these scaffolds.


Assuntos
Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos/métodos , Ativação Enzimática/efeitos dos fármacos , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Mutação , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/química , Domínios Proteicos , Ratos
3.
J Mol Biol ; 425(16): 2922-39, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23727266

RESUMO

The ATP-hydrolyzing molecular chaperones Hsc70/Hsp70 and Hsp90 bind a diverse set of tetratricopeptide repeat (TPR)-containing cofactors via their C-terminal peptide motifs IEEVD and MEEVD. These cochaperones contribute to substrate turnover and confer specific activities to the chaperones. Higher eukaryotic genomes encode a large number of TPR-domain-containing proteins. The human proteome contains more than 200 TPR proteins, and that of Caenorhabditis elegans, about 80. It is unknown how many of them interact with Hsc70 or Hsp90. We systematically screened the C. elegans proteome for TPR-domain-containing proteins that likely interact with Hsc70 and Hsp90 and ranked them due to their similarity with known chaperone-interacting TPRs. We find C. elegans to encode many TPR proteins, which are not present in yeast. All of these have homologs in fruit fly or humans. Highly ranking uncharacterized open reading frames C33H5.8, C34B2.5 and ZK370.8 may encode weakly conserved homologs of the human proteins RPAP3, TTC1 and TOM70. C34B2.5 and ZK370.8 bind both Hsc70 and Hsp90 with low micromolar affinities. Mutation of amino acids involved in EEVD binding disrupts the interaction. In vivo, ZK370.8 is localized to mitochondria in tissues with known chaperone requirements, while C34B2.5 colocalizes with Hsc70 in intestinal cells. The highest-ranking open reading frame with non-conserved EEVD-interacting residues, F52H3.5, did not show any binding to Hsc70 or Hsp90, suggesting that only about 15 of the TPR-domain-containing proteins in C. elegans interact with chaperones, while the many others may have evolved to bind other ligands.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Sítios de Ligação , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas
4.
J Biol Chem ; 288(22): 16032-42, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23569206

RESUMO

The ATPase-driven dimeric molecular Hsp90 (heat shock protein 90) and its cofactor Cdc37 (cell division cycle 37 protein) are crucial to prevent the cellular depletion of many protein kinases. In complex with Hsp90, Cdc37 is thought to bind an important lid structure in the ATPase domain of Hsp90 and inhibit ATP turnover by Hsp90. As different interaction modes have been reported, we were interested in the interaction mechanism of Hsp90 and Cdc37. We find that Cdc37 can bind to one subunit of the Hsp90 dimer. The inhibition of the ATPase activity is caused by a reduction in the closing rate of Hsp90 without obviously bridging the two subunits or affecting nucleotide accessibility to the binding site. Although human Cdc37 binds to the N-terminal domain of Hsp90, nematodal Cdc37 preferentially interacts with the middle domain of CeHsp90 and hHsp90, exposing two Cdc37 interaction sites. A previously unreported site in CeCdc37 is utilized for the middle domain interaction. Dephosphorylation of CeCdc37 by the Hsp90-associated phosphatase PPH-5, a step required during the kinase activation process, proceeds normally, even if only the new interaction site is used. This shows that the second interaction site is also functionally relevant and highlights that Cdc37, similar to the Hsp90 cofactors Sti1 and Aha1, may utilize two different attachment sites to restrict the conformational freedom and the ATP turnover of Hsp90.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Chaperoninas/química , Proteínas de Choque Térmico HSP90/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/genética , Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
5.
Biochim Biophys Acta ; 1823(3): 712-21, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21983200

RESUMO

The molecular chaperone Hsp90 has been discovered in the heat-shock response of the fruit fly more than 30years ago. Today, it is becoming clear that Hsp90 is in the middle of a regulatory system, participating in the modulation of many essential client proteins and signaling pathways. Exerting these activities, Hsp90 works together with about a dozen of cochaperones. Due to their organismal simplicity and the possibility to influence their genetics on a large scale, many studies have addressed the function of Hsp90 in several multicellular model systems. Defined pathways involving Hsp90 client proteins have been identified in the metazoan model systems of Caenorhabditis elegans, Drosophila melanogaster and the zebrafish Danio rerio. Here, we summarize the functions of Hsp90 during muscle maintenance, development of phenotypic traits and the involvement of Hsp90 in stress responses, all of which were largely uncovered using the model organisms covered in this review. These findings highlight the many specific and general actions of the Hsp90 chaperone machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).


Assuntos
Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Animais , Caenorhabditis elegans , Drosophila melanogaster , Modelos Animais , Peixe-Zebra
6.
PLoS One ; 6(9): e25485, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980476

RESUMO

The ATP-dependent molecular chaperone Hsp90 is required for the activation of a variety of client proteins involved in various cellular processes. Despite the abundance of known client proteins, functions of Hsp90 in the organismal context are not fully explored. In Caenorhabditis elegans, Hsp90 (DAF-21) has been implicated in the regulation of the stress-resistant dauer state, in chemosensing and in gonad formation. In a C. elegans strain carrying a DAF-21 mutation with a lower ATP turnover, we observed motility defects. Similarly, a reduction of DAF-21 levels in wild type nematodes leads to reduced motility and induction of the muscular stress response. Furthermore, aggregates of the myosin MYO-3 are visible in muscle cells, if DAF-21 is depleted, implying a role of Hsp90 in the maintenance of muscle cell functionality. Similar defects can also be observed upon knockdown of the Hsp90-cochaperone UNC-45. In life nematodes YFP-DAF-21 localizes to the I-band and the M-line of the muscular ultrastructure, but the protein is not stably attached there. The Hsp90-cofactor UNC-45-CFP contrarily can be found in all bands of the nematode muscle ultrastructure and stably associates with the UNC-54 containing A-band. Thus, despite the physical interaction between DAF-21 and UNC-45, apparently the two proteins are not always localized to the same muscular structures. While UNC-45 can stably bind to myofilaments in the muscular ultrastructure, Hsp90 (DAF-21) appears to participate in the maintenance of muscle structures as a transiently associated diffusible factor.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Regulação para Baixo/genética , Proteínas de Choque Térmico HSP90/genética , Células Musculares/metabolismo , Células Musculares/patologia , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Movimento Celular/genética , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/deficiência , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Células Musculares/ultraestrutura , Miosinas/metabolismo , Mutação Puntual , Estabilidade Proteica , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...