Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(24): 15584-15592, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35685180

RESUMO

A bioinspired PEEK material with hard "bricks" of nanoscale lamellae and micron-scale deformed spherulites bonded by soft "mortar" of a rigid amorphous fraction was produced with a pressure-induced flow (PIF) processing applied in the solid-state. Novel mechanisms were proposed for the marked and simultaneous improvement in the strength and toughness, where the tensile strength and impact strength could be increased to ∼200% and ∼450%, respectively. On one hand, the rotation, recombination and restacking of the crystalline blocks formed an oriented and stratified morphology similar to the "brick-and-mortar" structure in nacre, and resulted in the confined crack propagations and the tortuous energy dissipating paths. On the other hand, the PIF-relaxation due to the newly generated rigid amorphous fraction further contributed to the improvement of the impact strength. The efficiency of enhancement could be controlled by the molding temperature, the compression ratio, and the volume fraction of chopped carbon fiber. As a result, PIF-processing might endow the PEEK material with improved mechanical matching with the surrounding tissues and extended service life in biomedical applications while retaining excellent biocompatibility with no external substances introduced.

2.
Materials (Basel) ; 12(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866408

RESUMO

Due to the non-polar nature and low wettability of carbon fibers (CFs), the interfacial adhesion between CFs and the polyetheretherketone (PEEK) matrix is poor, and this has negative effects on the mechanical properties of CF/PEEK composites. In this work, we established a modification method to improve the interface between CFs and PEEK based chemical grafting of aminated polyetheretherketone (PEEK-NH2) on CFs to create an interfacial layer which has competency with the PEEK matrix. The changed chemical composition, surface morphology, surface energy, and interlaminar shear strength were investigated. After grafting, the interlaminar shear strength (ILSS) was improved by 33.4% due to the covalent bonds in the interface region, as well as having good compatibility between the interface modifier and PEEK. Finally, Dynamic Mechanical Analysis (DMA) and Scanning Electron Microscopy (SEM) observation also confirmed that the properties of the modified CF/PEEK composites interface were enhanced. This work is, therefore, a beneficial approach towards enhancing the mechanical properties of thermoplastic composites by controlling the interface between CFs and the PEEK matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...