Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Environ Manage ; 365: 121715, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968898

RESUMO

Treating hazardous landfill leachate poses significant environmental challenges due to its complex nature. In this study, we propose a novel approach for enhancing the anaerobic digestion of landfill leachate using silver nanoparticles (Ag NPs) conjugated with eco-friendly green silica nanoparticles (Si NPs). The synthesized Si NPs and Ag@Si NPs were characterized using various analytical techniques, including transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The anaerobic digestion performance of Si NPs and Ag@Si NPs was tested by treating landfill leachate samples with 50 mg/L of each NP. The results demonstrated an enhancement in the biogas production rate compared to the control phase without the nanocomposite, as the biogas production increased by 14% and 37% using Si NPs and Ag@Si NPs. Ag@Si NPs effectively promoted the degradation of organic pollutants in the leachate, regarding chemical oxygen demand (COD) and volatile solids (VS) by 58% and 65%. Furthermore, microbial analysis revealed that Ag@Si NPs enhanced the activity of microbial species responsible for the methanogenic process. Overall, incorporating AgNPs conjugated with eco-friendly green Si NPs represents a sustainable and efficient approach for enhancing the anaerobic digestion of landfill leachate.


Assuntos
Biocombustíveis , Nanopartículas Metálicas , Oryza , Dióxido de Silício , Prata , Poluentes Químicos da Água , Prata/química , Dióxido de Silício/química , Nanopartículas Metálicas/química , Anaerobiose , Poluentes Químicos da Água/química , Nanopartículas/química
2.
Asian Pac J Cancer Prev ; 25(6): 2105-2112, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38918673

RESUMO

PURPOSE: The aim of this study was to investigate the detector size effect on small-field dosimetry and compare the performance of 6MV WFF/FFF techniques. METHODS: We investigated the detector size effect on small-field dosimetry and compared the performance of 6MV WFF/FFF techniques. PDD, profile curves, and absorbed dose were measured in water under reference conditions with 6MV (WFF/FFF) techniques. We employed Farmer FC65-P, CC13, CC01, and IBA Razor diode, with Versa Lineac. Subsequently, we replicated this assessment for small-fields under 5cmx5cm dimensions. RESULTS: For both 6MV WFF/FFF, significant dose differences (Dmax=1.47cm), were ±4.55%, ±6.7, ±12.75% and ±33.3% for 4cmx4cm, 3cmx3cm, 2cmx2cm, and 1cmx1cm, respectively. The average difference relative to D10 was observed to be ±4.66%, ±5.73%, ±6.58%, and ±8.75% for the previous field sizes. Differences between WFF/FFF are neglected values at all field sizes>2.3%, also, the output of the largest detector FC65-P is lower at 55% in the smallest field size. Variation in the profile doesn't exceed a difference of >5% in flatness between WFF/FFF at depth10cm, across all fields, while symmetry is >1%, but radiation output is considerably lower at 55% for FC65-P chamber in 2cmx2cm, 1cmx1cm compared to the CC01 chamber and Razor diode. Significant differences in 1cmx1cm, where FC65-P chamber exhibits around 49% difference compared to Razor diode with 6MV (WFF/FFF).  Conclusions: Significant differences were observed in doses with various detectors. Detector-size influences the dose. WFF/FFF techniques show no major differences in small-fields dosimetry. Utilize some situations the advantage of FFF boasting a higher dose rate, consequently reducing treatment time to half.


Assuntos
Radiometria , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas
3.
Chemosphere ; 362: 142639, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909865

RESUMO

Anaerobic digestion of floated paperboard sludge (PS) cake suffers from volatile fatty acids (VFAs) accumulation, nutrient unbalanced condition, and generation of digestate with a risk of secondary pollution. To overcome these drawbacks, sewage sludge (SS) was added to PS cake for biogas recovery improvement under a co-digestion process followed by the thermal treatment of solid fraction of digestate for biochar production. Batch experimental assays were conducted at different SS:PS mixing ratios of 70:30, 50:50, 30:70, and 20:80 (w/w), and their anaerobic co-digestion performances were compared to the mono-digestion systems at 35 ± 0.2 °C for 45 days. The highest methane yield (MY) of 241.68 ± 14.81 mL/g CODremoved was obtained at the optimum SS:PS ratio of 50:50 (w/w). This experimental condition was accompanied by protein, carbohydrate, and VFA conversion efficiencies of 47.3 ± 3.2%, 46.8 ± 3.2%, and 56.3 ± 3.8%, respectively. The synergistic effect of SS and PS cake encouraged the dominance of Bacteroidota (23.19%), Proteobacteria (49.65%), Patescibacteria (8.12%), and Acidovorax (12.60%) responsible for hydrolyzing the complex organic compounds and converting the VFAs into biomethane. Further, the solid fraction of digestate was subjected to thermal treatment at a temperature of 500 °C for 2.0 h, under an oxygen-limited condition. The obtained biochar had a yield of 0.48 g/g dry digestate, and its oxygen-to-carbon (O/C), carbon-to-nitrogen (C/N), and carbon-to-phosphorous (C/P) ratios were 0.55, 10.23, and 16.42, respectively. A combined anaerobic co-digestion/pyrolysis system (capacity 50 m3/d) was designed based on the COD mass balance experimental data and biogenic CO2 market price of 22 USD/ton. This project could earn profits from biogas (12,565 USD/yr), biochar (6641 USD/yr), carbon credit (8014 USD/yr), and COD shadow price (6932 USD/yr). The proposed project could maintain a payback period of 6.60 yr. However, further studies are required to determine the associated life cycle cost model that is useful to validate the batch experiment assumptions.

4.
Environ Sci Pollut Res Int ; 31(28): 40778-40794, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38819510

RESUMO

Electronic waste (E-waste) production worldwide is increasing three times faster than the growth of the global population, and it is predicted that the total volume of E-waste will reach 74 million tonnes by 2030. United Nations warned that unless emissions of heat-trapping gases are drastically reduced, humanity will face catastrophic climate change. We created a bibliometric analysis and discussed the life cycle and techno-economic assessments of the current E-waste situation. We found trending E-waste topics, particularly those related to industrial facilities implementing a circular economy framework and improving the recycling methods of lithium-ion batteries, and this was linked to the topic of electric vehicles. Other research themes included bioleaching, hydrometallurgy, reverse logistics, heavy metal life cycle assessment, and sustainability. These topics can interest industrial factories and scientists interested in these fields. Also, throughout techno-economic assessments, we highlighted several economic and investment opportunities to benefit stakeholders from E-waste recycling. While the rate of E-waste is increasing, consumer education on the proper E-waste management strategies, a collaboration between international organizations with the industrial sector, and legislation of robust E-waste regulations may reduce the harmful effect on humans and the environment and increase the income to flourish national economies.


Assuntos
Bibliometria , Resíduo Eletrônico , Reciclagem , Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos
5.
J Environ Manage ; 354: 120414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412730

RESUMO

Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/química , Carbono , Instalações de Eliminação de Resíduos , Água , Resíduos Sólidos
6.
Sci Rep ; 13(1): 19621, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949908

RESUMO

Methylene blue (MB) dye is considered a well-known dye in many industries and the low concentration of MB is considered very polluted for all environment if it discharged without any treatment. For that reason, many researchers used advanced technologies for removing MB such as the electrochemical methods that considered very simple and give rapid response. Considering these aspects, a novel quartz crystal microbalance nanosensors based on different concentrations of PVC@SiO2 were designed for real-time adsorption of MB dye in the aqueous streams at different pHs and different temperatures. The characterization results of PVC@SiO2 showed that the PVC@SiO2 have synthesized in spherical shape. The performance of the designed QCM-Based PVC@SiO2 nanosensors were examined by the QCM technique. The sensitivity of designed nanosensors was evaluated at constant concentration of MB (10 mg/L) at different pHs (2, 7 and 11) and temperatures (20 °C, 25 °C, and 30 °C). From the experimental, the best concentration of PVC@SiO2 was 3% for adsorbed 9.99 mg of cationic methylene blue at pH 11 and temperature 20 °C in only 5.6 min.

7.
Sci Rep ; 13(1): 19597, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949960

RESUMO

Chromium is a hazardous compound from industrial processes, known for its toxicity, mutagenicity, teratogenicity, and carcinogenicity. Chemical methods are efficient but cost-effective alternatives with reduced sludge are sought. Electro-coagulation, utilizing low-cost iron plate electrodes, was explored for factual tannery wastewater treatment in this manuscript. Operating parameters such as initial chromium concentration, voltage, electrode number, operating time, agitation speed and current density has been studied to evaluate the treatment effeciency. Under optimal conditions (15 V, 0.4 mA/cm2, 200 rpm, 330 ppm chromium, 8 iron electrodes with a total surface area of 0.1188 m2, 3 h), chromium elimination was 98.76%. Iron anode consumption, power use, and operating cost were 0.99 gm/L, 0.0143 kW-h/L, and 160 EGP/kg of chromium eliminated, respectively. Kinetics studies were pursued first-order reaction (97.99% correlation), and Langmuir isotherms exhibited strong conformity (Langmuir R2: 99.99%). A predictive correlation for chromium elimination (R2: 97.97%) was developed via statistical regression. At HARBY TANNERY factory in Egypt, industrial sewage treatment achieved a final chromium disposal rate of 98.8% under optimized conditions.

8.
Sci Rep ; 13(1): 15601, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730796

RESUMO

Although submerged membrane bioreactor (MBR) are widely used in treating municipal wastewater and recovery of potential resources, membrane operational parameters and membrane fouling control remain debated issues. In this study, the treatment of municipal wastewater by MBR at high-biomass sludge (MLSS (g/L) ranging from 5.4 g/L to 16.1 g/L) was assessed at an organic loading rates (OLRs) ranging from 0.86 to 3.7 kg COD/m3d. The correlation between trans-membrane pressure and total fouling resistance was thoroughly investigated in this study. According to the findings, greater OLRs of 0.86 to 3.7 kg COD/m3d caused a decrease in COD, BOD, and NH4-N removal efficiency, and higher OLRs of 3.7 kg COD/m3d resulted in a higher increase in total fouling resistance (Rt). The economic study of using the MBR system proved that for a designed flow rate of 20 m3/d, the payback period from using the treated wastewater will be 7.98 years, which confirms the economic benefits of using this MBR for treating municipal wastewater. In general, understanding the challenges facing the efficiency of MBR would improve its performance and, consequently, the sustainability of wastewater reclamation.


Assuntos
Reatores Biológicos , Águas Residuárias , Membranas , Biomassa , Cabeça
9.
Asian Pac J Cancer Prev ; 24(8): 2757-2764, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642062

RESUMO

BACKGROUND: The use of relatively narrow fields has become necessary with the advent of intricate and accurate radiation therapy delivery dose to patients; therefore, small-field dosimetry faces several difficulties. Both dose calculations and measurements require to be performed with extra care, due to the uncertainty that might be increased by using such small field sizes. MATERIAL AND METHODS: In this study, we investigated the effect of detectors size on the dosimetry of small fields [starting with radiation fields from (1cm x 1cm), (2cm x 1cm), and (3cm x 1cm)...etc., up to (4cm x 5cm) and (5cm x 5cm)]. We used the linear accelerator and different types of ionization chambers i.e. [Farmer FC65-P, CC13, and CC01 (pinpoint)] an addition to semiconductors i.e. (IBA Razor diode)], and we investigated all detectors to read the absorbed dose in water under the reference conditions (field 10cm x10cm, SSD 100cm and depth 10cm). RESULTS: While measuring the absolute dose under reference conditions, all detectors had a non-significant difference of less than ±2%, except for the Razor diode, which showed a significant difference of ± 5%. On the other hand, when small fields were measured, we discovered a significant difference of 48%, compared to the Razor diode. CONCLUSION: The Razor diode is more stable in small-field dosimetry than other detectors. Also, the Razor Diode is intended for relative dosimetry but, it shall not be used for absolute dose measurements.


Assuntos
Doses de Radiação , Radioterapia , Humanos , Aceleradores de Partículas , Água
10.
Bioresour Technol ; 381: 129168, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182680

RESUMO

Anammox is a widely adopted process for energy-efficient removal of nitrogen from wastewater, but challenges with NOB suppression and NO3- accumulation have led to a deeper investigation of this process. To address these issues, the synergy of partial denitrification and anammox (PD-anammox) has emerged as a promising solution for sustainable nitrogen removal in wastewater. This paper presents a comprehensive review of recent developments in the PD-anammox system, including stable performance outcomes, operational parameters, and mathematical models. The review categorizes start-up and recovery strategies for PD-anammox and examines its contributions to sustainable development goals, such as reducing N2O emissions and saving energy. Furthermore, it suggests future trends and perspectives for improving the efficiency and integration of PD-anammox into full-scale wastewater treatment system. Overall, this review provides valuable insights into optimizing PD-anammox in wastewater treatment, highlighting the potential of simultaneous processes and the importance of improving efficiency and integration into full-scale systems.


Assuntos
Desnitrificação , Águas Residuárias , Esgotos , Nitrogênio , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Oxirredução
11.
Sci Rep ; 13(1): 4431, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932149

RESUMO

An important industrial process that often occurs on the surface of a heterogeneous catalyst using thermochemical or photochemical could help in the oxidation of methanol-based wastewater to formaldehyde. Titania-based photocatalysts have drawn a lot of interest from scientists because they are a reliable and affordable catalyst material for photocatalytic oxidation processes in the presence of light energy. In this study, a straight-forward hydrothermal method for producing n-TiO2@α-Fe2O3 composite photocatalysts and hematite (α-Fe2O3) nanocubes has been done. By adjusting the ratio of n-TiO2 in the prepared composite photocatalysts, the enhancing influence of the nitrogen-doped titania on the photocatalytic characteristics of the prepared materials was investigated. The prepared materials were thoroughly characterized using common physiochemical methods, such as transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), X-ray photoelectrons spectroscopy (XPS), physisorption (BET), and others, in order to learn more about the structure The results obtained showed that nitrogen-doped titania outperforms non-doped titania for methanol photooxidation. The addition of nitrogen-doped titania to their surfaces resulted in an even greater improvement in the photooxidation rates of the methanol coupled with hematite. The photooxidation of methanol in the aqueous solution to simulate its concentration in the wastewater has been occurred. After 3 h, the four weight percent of n-TiO2@α-Fe2O3 photocatalyst showed the highest rate of HCHO production.

12.
Sci Total Environ ; 869: 161879, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716871

RESUMO

Large amounts of Fenton sludge and waste activated sludge (WAS) are mixed as ferric sludge (FS) in most industrial wastewater treatment plants. The treatment of such waste represents a challenge and quantity-dependent cost, so that a reliable way for FS waste reduction is required. In this study, we develop a facile acid-assisted hydrothermal treatment (HT) for the cost-efficient treatment of hazardous FS waste. Sulfuric acid was dosed at 0.25 mL/g dry solid (DS) to the HT process, which significantly increased the total solid mass reduction (TMR) by 25.1 % and dry mass reduction (DMR) by 104.4 %. The participation of sulfuric acid during the HT process changed the HT reaction pathway from dehydration to demethylation based on the analysis of the derivative thermogravimetric and Van Krevelen diagram. The addition of sulfuric acid improved the release of Fe from FS by 52.9 %, which contributed to the DMR. During the acid-assisted HT, Fe(III) was effectively reduced to Fe(II) within the produced hydrochar, which can be recycled for the Fenton reaction during the degradation of actual industrial wastewater such as pharmaceutical wastewater. Moreover, Sulfuric acid facilitated the generation of sulfonated hydrochar, which was efficient as an adsorbent for the complete removal of some metals such as Cu(II) - cation metal (98.8 %) and Cr(VI) - anion metal (99.9 %). This study firstly provides a novel and reliable approach for hazardous FS reduction and pointed out the recycling of hydrochar as the supplement for the Fenton reaction and adsorbents for some hazardous heavy metals.

13.
Pediatr Nephrol ; 38(2): 573-582, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35585363

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common complication in patients with diabetic ketoacidosis (DKA) (incidence 35-77%). AKI evolution during DKA treatment/recovery is poorly understood. Our aim was to assess children with DKA for prevalence, short-term kidney outcomes, severity, and predictors of AKI development and resolution. METHODS: This retrospective cohort study included children aged 2-14 years admitted with DKA between January 2016 and May 2020 in a Saudi tertiary care hospital. We defined AKI as an increase in serum creatinine of > 1.5 times baseline or > 3 mg/dL (26 mmol/L) within 48 h. RESULTS: Of 213 patients admitted with DKA, 172 (80.75%) developed AKI: stage 1 in 83 (38.96%), stage 2 in 86 (40.37%), and stage 3 in 3 (1.4%). No patient required dialysis. Multivariate analysis showed an increased risk of developing AKI with male gender (OR = 2.85) and lower serum bicarbonate (OR = 0.83) when adjusted for initial heart rate, hematocrit, new onset diabetes, and recurrent AKI. The mean time to AKI resolution was 13.21 ± 6.78 h. Factors leading to prolonged recovery from AKI in linear regression analysis were older age (B coefficient = 0.44, p = 0.01), recurrent DKA episodes (B coefficient = 3.70, p value 0.003), increased acidosis severity (B coefficient = - 0.44, p = 0.04), increased time to anion gap normalization (B coefficient = 0.44, p = 0.019), and increased initial glucose (B coefficient = 0.01, p = 0.011). CONCLUSION: In our cohort, AKI is a common, but mostly transient complication in children presenting with DKA, and its severity is associated with longer intensive care stays and time for acidosis resolution. AKI was associated with male gender, and lower serum bicarbonate. Proper consideration of such risk factors is needed for AKI assessment and management in future DKA clinical practice guidelines. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Acidose , Injúria Renal Aguda , Diabetes Mellitus , Cetoacidose Diabética , Humanos , Criança , Masculino , Cetoacidose Diabética/complicações , Estudos Retrospectivos , Bicarbonatos , Diálise Renal/efeitos adversos , Fatores de Risco , Injúria Renal Aguda/etiologia
14.
Molecules ; 27(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500211

RESUMO

Solenostemma argel is a desert medicinal plant indigenous to African countries. This research aims to study the pharmacological properties of Solenostemma argel plant. Aerial parts (leaves and flowers) of Solenostemma argel (Delile) Hayane were tested for antibacterial activity, antioxidant activity, anticancer, and anti-inflammatory activity. Phenolic and flavonoid contents of the plant were characterized. There was an increase in the antioxidant activity of Solenostemma argel extract from 12.16% to 94.37% by increasing concentration from10 µg/mL to 1280 µg/mL. The most sensitive organism was S. epidermidis with chloroform extract. The MTT assay revealed that methanolic extracts of Solenostemma argel showed potent cytotoxic effects on the A549, Caco-2, and MDAMB-231 cell lines, respectively. The anti-inflammatory activity increased by increasing the concentration of methanolic extract of Solenostemma argel, using indomethacin as a standard. Gallic acid was the most abundant phenolic acid, followed by synergic acid and p-coumaric acid, respectively. Catechin, quercetin, luteolin, kaempferol and rutin flavonoids were also found in the methanolic extract. GC-mass analysis showed that aerial parts of Solenostemma argel were rich in 2-(5-methyl-5 vinyl tetrahydro-2-furanyl)-2-propanol (11.63%), hexanoic acid methyl ester (10.93%), 3-dioxolane,4-methyl-2-pentadecyl (9.69%), phenol, 2-(1,1-dimethylethyl) (8.50%). It can be concluded that Solenostemma argel methanolic extract contain natural bioactive constituents with potential medicinal importance such as antioxidants, antimicrobial, anti-inflammatory, and anticancer activities.


Assuntos
Apocynaceae , Flavonoides , Humanos , Flavonoides/farmacologia , Células CACO-2 , Extratos Vegetais/farmacologia , Fenóis/farmacologia , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia
15.
Infect Drug Resist ; 15: 7401-7411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36540101

RESUMO

Background: Most patients admitted to intensive care units (ICUs) with severe Corona Virus Disease 2019 (COVID-19) pneumonia receive antibacterial antibiotics with little evidence of bacterial infections. Objective: This study was designed to review the profiles of patients with severe COVID-19 pneumonia requiring intensive care, the rate of bacterial coinfection, the antibiotics used, and their relation to patient outcomes (death or recovery). Methods: This was a retrospective study that reviewed the medical records of all patients with confirmed COVID-19 (n = 120) severe pneumonia admitted directly from the emergency room to the intensive care unit, at a public hospital during the period from May 2020 to April 2021. The data collected included patients' demographic and laboratory data, comorbidities, antibiotic treatment, and their outcome. Descriptive statistics, bivariate inferential analysis tests (chi-square and unpaired T-Tests) and multivariable binary logistic regression were performed. Results: The mean age of the patients was 56.8 ± 16.5 years old, and among them, 74 (62.7%) were males. Of the included patients, 92 (77.0%) had comorbidities, 76 (63.3%) required mechanical ventilation and 30 (25%) died. All patients received empirical antibiotics for suspected bacterial coinfection. The most common antibiotics used were azithromycin (n = 97, 8%) and imipenem (n = 83, 9%). Ninety patients (75%) were on two empirical antibiotics. Early positive cultures for pathogens were found only in four patients (3.3%), whereas 36 (30%) patients had positive cultures 5-10 days after admission. The most frequently isolated pathogens were Acinetobacter baumannii (n = 16) and coagulase-negative Staphylococci (n = 14). In bivariate analysis empirical treatment with azithromycin resulted in a significantly lower mortality rate (p = 0.023), meanwhile mechanical ventilation, days of stay in intensive care unit, morbidities (e.g., lung disease), linezolid and, vancomycin use associated with mortality (p< 0.05). The adjusted logistic regression, controlling for age and gender, revealed that azithromycin antibiotic was more likely protective from mortality (OR= 0.22, 95%CI 0.06-0.85, p=0.028. However, patients with lung diseases and under mechanical ventilation were 35.21 and 19.57 more likely to die (95%CI =2.84-436.70, p=0.006; 95%CI=2.66-143.85, p=0.003, respectively). Conclusion: Bacterial coinfection with severe COVID-19 pneumonia requiring intensive care was unlikely. The benefit of Azithromycin over other antibiotics could be attributed to its anti-inflammatory properties rather than its antibacterial effect.

16.
Sci Rep ; 12(1): 19666, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385150

RESUMO

In this study, a simple method based on non-ionic surfactant polysorbates-80 was used to create mesoporous γ-Al2O3NPs. The properties of the prepared mesoporous alumina nanoparticles (Al2O3NPs) were verified using ATR-FTIR, XRD, SEM, TEM, DLS, and BET surface area analysis. Then, thin-film nanocomposite (TFN) nanofiltration membranes were fabricated by interfacial polymerization of embedded polyamide layers with varied contents (0.01 to 0.15 wt.%) of mesoporous γ-Al2O3NPs. The surface roughness, porosity, pore size, and contact angle parameters of all the prepared membranes were also determined. The performance of the fabricated membranes was investigated under various mesoporous γ-Al2O3NPs loads, time, and pressure conditions. Mesoporous γ-Al2O3NPs revealed an important role in raising both the membrane hydrophilicity and the surface negativity. The addition of 0.03 wt.% mesoporous γ-Al2O3NPs to the TFN membrane increased water flux threefold compared to the TF control (TFC) membrane, with maximum water flux reaching 96.5, 98, 60, and 52 L/(m2.h) for MgSO4, MgCl2, Na2SO4, and NaCl influent solutions, respectively, with the highest salt rejection of 96.5%, 92.2%, 98.4%. The TFN-Al2O3 membrane was also able to soften water and remove polyvalent cations such as Mg2+ with a highly permeable flux. The TFN-Al2O3 membrane successfully removed the hardness of the applied water samples below the WHO limit compared to using merely the TFC membrane. Furthermore, the TFN-Al2O3 nanofiltration membrane unit proved to be a promising candidate for the desalination of real brine like that collected from the Safaga area, Egypt.

17.
Front Cell Dev Biol ; 10: 949532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211464

RESUMO

Acute skeletal muscle injury is followed by satellite cell activation, proliferation, and differentiation to replace damaged fibers with newly regenerated muscle fibers, processes that involve satellite cell interactions with various niche signals. Here we show that satellite cell specific deletion of the chemokine receptor CXCR4, followed by suppression of recombination escapers, leads to defects in regeneration and satellite cell pool repopulation in both the transplantation and in situ injury contexts. Mechanistically, we show that endothelial cells and FAPs express the gene for the ligand, SDF1α, and that CXCR4 is principally required for proper activation and for transit through the first cell division, and to a lesser extent the later cell divisions. In the absence of CXCR4, gene expression in quiescent satellite cells is not severely disrupted, but in activated satellite cells a subset of genes normally induced by activation fail to upregulate normally. These data demonstrate that CXCR4 signaling is essential to normal early activation, proliferation, and self-renewal of satellite cells.

18.
Environ Res ; 215(Pt 3): 114432, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167115

RESUMO

The various forms of nitrogen (N), including ammonium (NH4+), nitrite (NO2-), and nitrate (NO3-), present in wastewaters can create critical biotic stress and can lead to hazardous phenomena that cause imbalances in biological diversity. Thus, biological nitrogen removal (BNR) from wastewaters is considered to be imperatively urgent. Therefore, anammox-based systems, i.e. partial nitrification and anaerobic ammonium oxidation (PN/anammox) and partial denitrification and anammox (PD/anammox) have been universally acknowledged to consider as alternatives, promising and cost-effective technologies for sustainable N removal from wastewaters compared to nitrification-denitrification processes. This review comprehensively presents and discusses the latest advances in BNR technologies, including traditional nitrification-denitrification and anammox-based systems. To a deep understanding of a better-controlled combining anammox with traditional processes, the microbial community diversity and metabolism, as well as, biomass morphological characteristics were clearly reviewed in the anammox-based systems. Explaining simultaneous microbial competition and control of crucial operation parameters in single-stage anammox-based processes in terms of optimization and economic benefits makes this contribution a different vision from available review papers. The most important sustainability indicators, including global warming potential (GWP), carbon footprint (CF) and energy behaviours were explored to evaluate the sustainability of BNR processes in wastewater treatment. Additionally, the challenges and solutions for BNR processes are extensively discussed. In summary, this review helps facilitate a critical understanding of N removal technologies. It is confirmed that sustainability and saving energy would be achieved by anammox-based systems, thereby could be encouraged future outcomes for a sustainable N removal economy.


Assuntos
Compostos de Amônio , Purificação da Água , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Desnitrificação , Nitratos , Nitritos , Nitrogênio/metabolismo , Dióxido de Nitrogênio , Oxirredução , Esgotos , Águas Residuárias
19.
Int J Biometeorol ; 66(10): 2047-2053, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35882644

RESUMO

The objectives of this research were to contrast the expression values of heat shock protein (HSP70) and interleukins 2, 6 and 12 (IL 2, IL 6 and IL 12) genes in summer and winter in two different locations in Egypt (Alexandria zone and Matrouh zone) to deduce changes in thermo-physiological traits and biochemical blood metabolites of Barki sheep. A total of 50 ewes (20 in Alexandria and 30 in Matrouh) were individually blood sampled to determine plasma total protein (TP), Albumin, Globulin and Glucose constituents and T3, T4 and cortisol hormones. The thermo-physiological parameters of rectal temperature (RT, °C), skin temperature (ST, °C), Wool temperature (WT, °C), respiration rate (RR, breaths/min) and pulse rate (PR, beats/min) were measured for each ewe. Expressions of IL 2, IL 6, IL 12 and HSP 70 in summer and winter were analyzed along with thermo-physiological parameters and blood biochemical metabolites. In both locations, THI had significant effects on ST, WT, PR and RR, but not significant on RT. However, it had no significant effects on blood plasma metabolites and hormonal concentrations in the two locations in summer and winter. In Alexandria location, THI had negative significant effect on the expressions of IL-2 and IL-6 but positively affected on HSP70 genes in winter, while the expression of IL-12 gene was not affected by seasons, whereas in Matrouh zone, the effects of THI on the expressions of all tolerance genes were not significant. The results of the current study suggest that IL-2, IL-6 and HSP70 genes could be used as molecular markers for heat/cold stress.


Assuntos
Transtornos de Estresse por Calor , Interleucina-2 , Albuminas , Animais , Feminino , Glucose , Proteínas de Choque Térmico HSP70/genética , Transtornos de Estresse por Calor/veterinária , Temperatura Alta , Hidrocortisona , Interleucina-12 , Interleucina-6 , Estações do Ano , Ovinos/genética
20.
Chemosphere ; 306: 135580, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35810864

RESUMO

The presence of 1,4 dioxane in wastewater is associated with severe health and environmental issues. The removal of this toxic contaminant from the industrial effluents prior to final disposal is necessary. The study comprehensively evaluates the performance of sequential batch membrane bioreactor (MBR) for treating wastewater laden with 1,4 dioxane. Acetate was supplemented to the wastewater feed as an electron donor for enhancing and stimulating the microbial growing activities towards the degradation of 1,4 dioxane. The removal efficiency of 1,4 dioxane was maximized to 87.5 ± 6.8% using an acetate to dioxane (A/D) ratio of 4.0, which was substantially dropped to 31.06 ± 3.7% without acetate addition. Ethylene glycol, glyoxylic acid, glycolic acid, and oxalic acid were the main metabolites of 1,4 dioxane biodegradation using mixed culture bacteria. The 1,4 dioxane degrading bacteria, particularly the genus of Acinetobacter, were promoted to 92% at the A/D ratio of 4.0. This condition encouraged as well the increase of the main 1,4 dioxane degraders, i.e., Xanthomonadales (12.5%) and Pseudomonadales (9.1%). However, 50% of the Sphingobacteriales and 82.5% of Planctomycetes were reduced due to the inhibition effect of the 1,4 dioxane contaminate. Similarly, the relative abundance of Firmicutes, Verrucomicrobia, Chlamydiae, Actinobacteria, Chloroflexi, and Nitrospirae was reduced in the MBR at the A/D ratio of 4.0. The results derived from the microbial analysis and metabolites detection at different A/D ratios indicated that acetate supplementation (as an electron donor) maintained an essential role in encouraging the microorganisms to produce the monooxygenase enzymes responsible for the biodegradation process. Economic feasibility of such a MBR system showed that for a designed flow rate of 30 m3∙d-1, the payback period from reusing the treated wastewater would reach 6.6 yr. The results strongly recommend the utilization of mixed culture bacteria growing on acetate for removing 1,4 dioxane from the wastewater industry, achieving dual environmental and economic benefits.


Assuntos
Elétrons , Águas Residuárias , Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Dioxanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...