Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34835556

RESUMO

This investigation aimed at evaluating the efficiency of micro and nanoclays as a low-cost material for the removal of crystal violet (CV) dye from an aqueous solution. The impacts of various factors (contact time, pH, adsorbent dosage, temperature, initial dye concentration) on the adsorption process have been taken into consideration. Six micro and nanoclay samples were obtained by treating clay materials collected from different locations in the Albaha region, Saudi Arabia. Out of the six tested micro and nanoclays materials, two (NCQ1 and NCQ3) were selected based on the highest adsorption efficiency for complete experimentation. The morphology and structure of the selected micro and nanoclay adsorbents were characterized by various techniques: SEM-EDX, FTIR, XRF, XRD, and ICP-MS. The XRF showed that the main oxides of both nanoclays were SiO2, Al2O3, Fe2O3, K2O, CaO, and MgO, and the rest were impurities. All the parameters affecting the adsorption of CV dye were optimized in a batch system, and the optimized working conditions were an equilibrium time of 120 min, a dose of 30 mg, a temperature of 25 °C, and an initial CV concentration of 400 mg/L. The equilibrium data were tested using nonlinear isotherm and kinetic models, which showed that the Freundlich isotherm and pseudo-second-order kinetics gave the best fit with the experimental data, indicating a physico-chemical interaction occurred between the CV dye and both selected micro and nanoclay surfaces. The maximum adsorption capacities of NCQ1 and NCQ3 adsorbents were 206.73 and 203.66 mg/g, respectively, at 25 °C. The thermodynamic factors revealed that the CV dye adsorption of both micro and nanoclays was spontaneous and showed an exothermic process. Therefore, the examined natural micro and nanoclays adsorbents are promising effective adsorbents for the elimination of CV dye from an aqueous environment.

2.
Nanomaterials (Basel) ; 11(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34835731

RESUMO

This study was performed to appraise the biocompatibility of polyhedral oligomeric silsesquioxane (POSS)-grafted polyurethane (PU) nanocomposites as potential materials for muscle tissue renewal. POSS nanoparticles demonstrate effectual nucleation and cause noteworthy enhancement in mechanical and thermal steadiness as well as biocompatibility of resultant composites. Electrospun, well-aligned, POSS-grafted PU nanofibers were prepared. Physicochemical investigation was conducted using several experimental techniques, including scanning electron microscopy, energy dispersive X-ray spectroscopy, electron probe microanalysis, Fourier transform infrared spectroscopy, and X-ray diffraction pattern. Adding POSS molecules to PU did not influence the processability and morphology of the nanocomposite; however, we observed an obvious mean reduction in fiber diameter, which amplified specific areas of the POSS-grafted PU. Prospective biomedical uses of nanocomposite were also appraised for myoblast cell differentiation in vitro. Little is known about C2C12 cellular responses to PU, and there is no information regarding their interaction with POSS-grafted PU. The antimicrobial potential, anchorage, proliferation, communication, and differentiation of C2C12 on PU and POSS-grafted PU were investigated in this study. In conclusion, preliminary nanocomposites depicted superior cell adhesion due to the elevated free energy of POSS molecules and anti-inflammatory potential. These nanofibers were non-hazardous, and, as such, biomimetic scaffolds show high potential for cellular studies and muscle regeneration.

3.
J Nanosci Nanotechnol ; 10(5): 3430-4, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20358972

RESUMO

Strontium titanate (SrTiO3) and chromium doped SrTiO3 (Cr/SrTiO3) were prepared by modified sol-gel method with the citric acid as a chelating agent in the ethylene glycol solution for the effective photodegradation of methylene blue dye under visible light irradiation. The synthesized doped and un-doped SrTiO3 nanoparticles were structurally characterized and their photoresponse performances for the efficient degradation of methylene blue dye have been demonstrated. After introducing the Cr on SrTiO3, UV-Vis absorption was appeared the red-shift at 566 nm from 392 nm as compare with bare SrTiO3. The photocatalytic degradation activity of Cr/SrTiO3 was significantly improved to 60% degradation of methylene blue in 3 h under visible light, which is approximately 5 times higher than that of the bare SrTiO3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...