Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431494

RESUMO

Carburization of cladding materials has long been a concern for the nuclear industry and has led to the restricted use of high-thermal conductivity fuels such as uranium carbides. With the rise of small modular reactors (SMRs) that frequently implement a graphite core-block, carburization of reactor components is once more in the foreground as a potential failure mechanism. To ensure commercial viability for SMRs, neutron-friendly cladding materials such as Zr-based alloys are required. In this work, the carburization kinetics of Zircaloy-4 (Zry-4), for the temperature range 1073-1673 K (covering typical operating temperatures and off-normal scenarios) are established. The following Arrhenius relationship for the parabolic constant describing ZrC growth is derived: Kp (in µm2/s) = 609.35 exp(-1.505 × 105/RT)). Overall, the ZrC growth is sluggish below 1473 K which is within the operational temperature range of SMRs. In all cases the ZrC that forms from solid state reaction is hypo-stoichiometric, as confirmed through XRD. The hardness and elastic modulus of carburized Zry-4 are also examined and it is shown that despite the formation of a ZrC layer, C ingress in the Zry-4 bulk does not impact the mechanical response after carburization at 1073 K and 1473 K for 96 h.

2.
Sci Rep ; 12(1): 4095, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260780

RESUMO

Asphaltenes from bitumen are abundant resource to be transformed into carbon as promising supercapacitor electrodes, while there is a lack of understanding the impact from different fractions of bitumen and asphaltenes, as well as the presence of transition metals. Here, nanoporous carbon was synthesized from bitumen, hexane-insoluble asphaltenes and N,N-dimethylformamide (DMF)-fractionated asphaltenes by using Mg(OH)2 nanoplates as the template with in-situ KOH activation, and used as an supercapacitor electrode material. All of the carbon exhibited large surface area (1500-2200 m2 g-1) with a distribution of micro and mesopores except for that derived from the DMF-soluble asphaltenes. The pyrolysis of asphaltenes resulted in the formation of nickel oxide/carbon composite (NiO/C), which demonstrated high capacitance of 380 F g-1 at 1 A g-1 discharge current resulting from the pseudocapacitance of NiO and the electrochemical double layer capacitance of the carbon. The NiO/C composite obtained from the DMF-insoluble portion had low NiO content which led to lower capacitance. Meanwhile, the specific capacitance of NiO/C composite from the DMF-soluble part was lower than the unfractionated asphaltene due to the higher NiO content resulting in lower conductivity. Therefore asphaltenes derived from nickel-rich crude bitumen is suitable for the synthesis of nanoporous NiO/C composite material with high capacitance.

3.
Polymers (Basel) ; 12(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640585

RESUMO

Binary (Chitosan-Cu(II), CCu) and Ternary (Chitosan-Alginate-Cu(II), CACu) composite materials were synthesized at variable composition: CCu (1:1), CACu1 (1:1:1), CACu2 (1:2:1) and CACu3 (2:1:1). Characterization was carried out via spectroscopic (FTIR, solids C-13 NMR, XPS and Raman), thermal (differential scanning calorimetry (DSC) and TGA), XRD, point of zero charge and solvent swelling techniques. The materials' characterization confirmed the successful preparation of the polymer-based composites, along with their variable physico-chemical and adsorption properties. Sulfate anion (sodium sulfate) adsorption from aqueous solution was demonstrated using C and CACu1 at pH 6.8 and 295 K, where the monolayer adsorption capacity (Qm) values were 288.1 and 371.4 mg/g, respectively, where the Sips isotherm model provided the "best-fit" for the adsorption data. Single-point sorption study on three types of groundwater samples (wells 1, 2 and 3) with variable sulfate concentration and matrix composition in the presence of composite materials reveal that CACu3 exhibited greater uptake of sulfate (Qe = 81.5 mg/g; 11.5% removal) from Well-1 and CACu2 showed the lowest sulfate uptake (Qe of 15.7 mg/g; 0.865% removal) from Well-3. Generally, for all groundwater samples, the binary composite material (CCu) exhibited attenuated sorption and removal efficiency relative to the ternary composite materials (CACu).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...