Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 52(3): 486-502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873823

RESUMO

BACKGROUND/AIMS: Cross-talk between different pancreatic islet cell types regulates islet function and somatostatin (SST) released from pancreatic delta cells inhibits insulin secretion from pancreatic beta cells. In other tissues SST exhibits both protective and pro-apoptotic properties in a tissue-specific manner, but little is known about the impact of the peptide on beta cell survival. Here we investigate the specific role of SST in the regulation of beta cell survival in response to physiologically relevant inducers of cellular stress including palmitate, cytokines and glucose. METHODS: Pancreatic MIN6 beta cells and primary mouse islet cells were pre-treated with SST with or without the Gi/o signalling inhibitor, pertussis toxin, and exposed to different cellular stress factors. Apoptosis and proliferation were assessed by measurement of caspase 3/7 activity, TUNEL and BrdU incorporation, respectively, and expression of target genes was measured by qPCR. RESULTS: SST partly alleviated upregulation of cellular stress markers (Hspa1a and Ddit3) and beta cell apoptosis in response to factors such as lipotoxicity (palmitate), pro-inflammatory cytokines (IL1ß and TNFα) and low glucose levels. This effect was mediated via a Gi/o protein-dependent pathway, but did not modify transcriptional upregulation of the specific NFκB-dependent genes, Nos2 and Ccl2, nor was it associated with transcriptional changes in SST receptor expression. CONCLUSION: Our results suggest an underlying protective effect of SST which modulates the beta cell response to ER stress and apoptosis induced by a range of cellular stressors associated with type 2 diabetes.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glucose/antagonistas & inibidores , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Toxina Pertussis/antagonistas & inibidores , Somatostatina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Regulação da Expressão Gênica , Glucose/farmacologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/farmacologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Palmítico/antagonistas & inibidores , Ácido Palmítico/farmacologia , Toxina Pertussis/farmacologia , Técnicas de Cultura de Tecidos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia
2.
J Endocrinol ; 225(1): 19-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25630331

RESUMO

The inhibitory effect of somatostatin (SST) on insulin secretion in vivo is attributed to a direct effect on pancreatic beta cells, but this is inconsistent with some in vitro results in which exogenous SST is ineffective in inhibiting secretion from isolated islets. We therefore investigated whether insulin secretion from the pancreatic islets may partly be regulated by an indirect effect of SST mediated via the CNS. Islet hormone secretion was assessed in vitro by perifusion and static incubations of isolated islets and in vivo by i.v. or i.c.v. administration of the SST analogue BIM23014C with an i.v. glucose challenge to conscious, chronically catheterised rats. Hormone content of samples was assessed by ELISA or RIA and blood glucose levels using a glucose meter. Exogenous SST14/SST28 or BIM23014C did not inhibit the release of insulin from isolated rodent islets in vitro, whereas peripheral i.v. administration of BIM23014C (7.5 µg) with glucose (1 g/kg) led to decreased plasma insulin content (2.3±0.5 ng insulin/ml versus 4.5±0.5 ng/ml at t=5 min, P<0.001) and elevated blood glucose levels compared with those of the controls (29.19±1.3 mmol/l versus 23.5±1.7 mmol/l, P<0.05). In contrast, central i.c.v. injection of BIM23014C (0.75 µg) had no significant effect on either plasma insulin (3.3±0.4 ng/ml, P>0.05) or blood glucose levels (23.5±1.7 mmol/l, P>0.05) although i.v. administration of this dose increased blood glucose concentrations (32.3±0.7 mmol/l, P<0.01). BIM23014C did not measurably alter plasma glucagon, SST, GLP1 or catecholamine levels whether injected i.v. or i.c.v. These results indicate that SST does not suppress insulin secretion by a centrally mediated effect but acts peripherally on islet cells.


Assuntos
Sistema Nervoso Central/fisiologia , Insulina/metabolismo , Somatostatina/farmacologia , Animais , Glicemia , Vias de Administração de Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Peptídeos Cíclicos/farmacologia , Ratos , Ratos Wistar , Somatostatina/administração & dosagem , Somatostatina/análogos & derivados
3.
Diabetologia ; 56(11): 2467-76, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23979485

RESUMO

AIMS/HYPOTHESIS: Chemokine (C-C motif) ligand 5 (CCL5) acts at C-C chemokine receptors (CCRs) to promote immune cell recruitment to sites of inflammation, but is also an agonist at G-protein-coupled receptor 75 (GPR75), which has very limited homology with CCRs. GPR75 is coupled to Gq to elevate intracellular calcium, so we investigated whether islets express this receptor and whether its activation by CCL5 increases beta cell calcium levels and insulin secretion. METHODS: Islet CCL5 receptor mRNA expression was measured by quantitative RT-PCR and GPR75 was detected in islets by western blotting and immunohistochemistry. In some experiments GPR75 was downregulated by transient transfection with small interfering RNA. Real-time changes in intracellular calcium were determined by single-cell microfluorimetry. Dynamic insulin secretion from perifused islets was quantified by radioimmunoassay. Glucose homeostasis in lean and obese mice was determined by measuring glucose and insulin tolerance, and insulin secretion in vivo. RESULTS: Mouse and human islets express GPR75 and its ligand CCL5. Exogenous CCL5 reversibly increased intracellular calcium in beta cells via GPR75, this phenomenon being dependent on phospholipase C activation and calcium influx. CCL5 also stimulated insulin secretion from mouse and human islets in vitro, and improved glucose tolerance in lean mice and in a mouse model of hyperglycaemia and insulin resistance (ob/ob). The improvement in glucose tolerance was associated with enhanced insulin secretion in vivo, without changes in insulin sensitivity. CONCLUSIONS/INTERPRETATION: Although CCL5 is implicated in the pathogenesis of diabetes through activation of CCRs, it has beneficial effects on beta cells through GPR75 activation.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Quimiocina CCL5/metabolismo , Homeostase/genética , Homeostase/fisiologia , Humanos , Imuno-Histoquímica , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos ICR , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...