Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 33(3): 299-313, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859333

RESUMO

Insights into host-virus interactions during SARS-CoV-2 infection are needed to understand COVID-19 pathogenesis and may help to guide the design of novel antiviral therapeutics. N 6-Methyladenosine modification (m6A), one of the most abundant cellular RNA modifications, regulates key processes in RNA metabolism during stress response. Gene expression profiles observed postinfection with different SARS-CoV-2 variants show changes in the expression of genes related to RNA catabolism, including m6A readers and erasers. We found that infection with SARS-CoV-2 variants causes a loss of m6A in cellular RNAs, whereas m6A is detected abundantly in viral RNA. METTL3, the m6A methyltransferase, shows an unusual cytoplasmic localization postinfection. The B.1.351 variant has a less-pronounced effect on METTL3 localization and loss of m6A than did the B.1 and B.1.1.7 variants. We also observed a loss of m6A upon SARS-CoV-2 infection in air/liquid interface cultures of human airway epithelia, confirming that m6A loss is characteristic of SARS-CoV-2-infected cells. Further, transcripts with m6A modification are preferentially down-regulated postinfection. Inhibition of the export protein XPO1 results in the restoration of METTL3 localization, recovery of m6A on cellular RNA, and increased mRNA expression. Stress granule formation, which is compromised by SARS-CoV-2 infection, is restored by XPO1 inhibition and accompanied by a reduced viral infection in vitro. Together, our study elucidates how SARS-CoV-2 inhibits the stress response and perturbs cellular gene expression in an m6A-dependent manner.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Metilação , RNA , RNA Viral/genética , Metiltransferases/genética
2.
J Biomed Nanotechnol ; 17(4): 615-626, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057888

RESUMO

We synthesized bioinspired sericin encapsulated gold nanoparticles (SGNPs) using HAuCl4 as the starting material in a bottom-up approach. Further, two-dimensional (2D) and three-dimensional (3D) conformational changes (folding and unfolding) in sericin were studied using circular dichroism (CD) and fluorescence spectroscopy, respectively, during and after the synthesis of particles. Finally, the synthesized SGNPs were characterized using several physical techniques to ensure their correct synthesis and study the size, stability, and charge over the surface of particles. At the beginning of the reaction, when gold was in the ionic form (Au+³), sericin exhibited maximum electrostatic interaction and underwent unfolding. Au+³ reduced to Au during the reaction, and sericin regained its 3D confirmation due to a decrease in its native electrostatic interactions. However, CD revealed the same patterns of unfolding and folding; a decrease in α helix and an increase inß3 pleated sheets were noticed. Although the 3D structure of sericin was restored after the synthesis of SGNPs, it was substantially altered. In addition, certain changes in the 2D structure were observed; however, these did not alter the activity of sericin. Furthermore, Fourier-transform infrared spectroscopy (FTIR) confirmed these findings. The SGNPs were found to be effective against lung cancer (A549 cells), with an IC50 of 145.49 ßM, without exerting any toxic effects on normal cells (NRK cells). The effectiveness of SGNPs was examined by MTT cytotoxicity and nuclear fragmentation assays. Furthermore, we assessed their ability to produce excessive ROS and release Cyt-c from the mitochondria for caspase-3-mediated apoptosis.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Sericinas , Antineoplásicos/farmacologia , Ouro , Seda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...