Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 220: 106818, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35483271

RESUMO

BACKGROUND AND OBJECTIVE: As deep learning faces a reproducibility crisis and studies on deep learning applied to neuroimaging are contaminated by methodological flaws, there is an urgent need to provide a safe environment for deep learning users to help them avoid common pitfalls that will bias and discredit their results. Several tools have been proposed to help deep learning users design their framework for neuroimaging data sets. Software overview: We present here ClinicaDL, one of these software tools. ClinicaDL interacts with BIDS, a standard format in the neuroimaging field, and its derivatives, so it can be used with a large variety of data sets. Moreover, it checks the absence of data leakage when inferring the results of new data with trained networks, and saves all necessary information to guarantee the reproducibility of results. The combination of ClinicaDL and its companion project Clinica allows performing an end-to-end neuroimaging analysis, from the download of raw data sets to the interpretation of trained networks, including neuroimaging preprocessing, quality check, label definition, architecture search, and network training and evaluation. CONCLUSIONS: We implemented ClinicaDL to bring answers to three common issues encountered by deep learning users who are not always familiar with neuroimaging data: (1) the format and preprocessing of neuroimaging data sets, (2) the contamination of the evaluation procedure by data leakage and (3) a lack of reproducibility. We hope that its use by researchers will allow producing more reliable and thus valuable scientific studies in our field.


Assuntos
Aprendizado Profundo , Software , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Reprodutibilidade dos Testes
2.
Front Neuroinform ; 15: 689675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483871

RESUMO

We present Clinica (www.clinica.run), an open-source software platform designed to make clinical neuroscience studies easier and more reproducible. Clinica aims for researchers to (i) spend less time on data management and processing, (ii) perform reproducible evaluations of their methods, and (iii) easily share data and results within their institution and with external collaborators. The core of Clinica is a set of automatic pipelines for processing and analysis of multimodal neuroimaging data (currently, T1-weighted MRI, diffusion MRI, and PET data), as well as tools for statistics, machine learning, and deep learning. It relies on the brain imaging data structure (BIDS) for the organization of raw neuroimaging datasets and on established tools written by the community to build its pipelines. It also provides converters of public neuroimaging datasets to BIDS (currently ADNI, AIBL, OASIS, and NIFD). Processed data include image-valued scalar fields (e.g., tissue probability maps), meshes, surface-based scalar fields (e.g., cortical thickness maps), or scalar outputs (e.g., regional averages). These data follow the ClinicA Processed Structure (CAPS) format which shares the same philosophy as BIDS. Consistent organization of raw and processed neuroimaging files facilitates the execution of single pipelines and of sequences of pipelines, as well as the integration of processed data into statistics or machine learning frameworks. The target audience of Clinica is neuroscientists or clinicians conducting clinical neuroscience studies involving multimodal imaging, and researchers developing advanced machine learning algorithms applied to neuroimaging data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...