Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(2): 231-249, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37927200

RESUMO

To overcome the limitations of in vitro two-dimensional (2D) cancer models in mimicking the complexities of the native tumor milieu, three-dimensional (3D) engineered cancer models using biomimetic materials have been introduced to more closely recapitulate the key attributes of the tumor microenvironment. Specifically, for colorectal cancer (CRC), a few studies have developed 3D engineered tumor models to investigate cell-cell interactions or efficacy of anti-cancer drugs. However, recapitulation of CRC cell line phenotypic differences within a 3D engineered matrix has not been systematically investigated. Here, we developed an in vitro 3D engineered CRC (3D-eCRC) tissue model using the natural-synthetic hybrid biomaterial PEG-fibrinogen and three CRC cell lines, HCT 116, HT-29, and SW480. To better recapitulate native tumor conditions, our 3D-eCRC model supported higher cell density encapsulation (20 × 106 cells/mL) and enabled longer term maintenance (29 days) as compared to previously reported in vitro CRC models. The 3D-eCRCs formed using each cell line demonstrated line-dependent differences in cellular and tissue properties, including cellular growth and morphology, cell subpopulations, cell size, cell granularity, migration patterns, tissue growth, gene expression, and tissue stiffness. Importantly, these differences were found to be most prominent from Day 22 to Day 29, thereby indicating the importance of long-term culture of engineered CRC tissues for recapitulation and investigation of mechanistic differences and drug response. Our 3D-eCRC tissue model showed high potential for supporting future in vitro comparative studies of disease progression, metastatic mechanisms, and anti-cancer drug candidate response in a CRC cell line-dependent manner.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Células HT29 , Engenharia Tecidual/métodos , Proliferação de Células , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Adv Healthc Mater ; 12(32): e2301139, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37450342

RESUMO

To investigate the ratiometric role of fibroblasts in prostate cancer (PCa) progression, this work establishes a matrix-inclusive, 3D engineered prostate cancer tissue (EPCaT) model that enables direct coculture of neuroendocrine-variant castration-resistant (CPRC-ne) or androgen-dependent (ADPC) PCa cells with tumor-supporting stromal cell types. Results show that the inclusion of fibroblasts within CRPC-ne and ADPC EPCaTs drives PCa aggression through significant matrix remodeling and increased proliferative cell populations. Interestingly, this is observed to a much greater degree in EPCaTs formed with a small number of fibroblasts relative to the number of PCa cells. Fibroblast coculture also results in ADPC behavior more similar to the aggressive CRPC-ne condition, suggesting fibroblasts play a role in elevating PCa disease state and may contribute to the ADPC to CRPC-ne switch. Bulk transcriptomic analyses additionally elucidate fibroblast-driven enrichment of hallmark gene sets associated with tumorigenic progression. Finally, the EPCaT model clinical relevancy is probed through a comparison to the Cancer Genome Atlas (TCGA) PCa patient cohort; notably, similar gene set enrichment is observed between EPCaT models and the patient primary tumor transcriptome. Taken together, study results demonstrate the potential of the EPCaT model to serve as a PCa-mimetic tool in future therapeutic development efforts.


Assuntos
Androgênios , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Castração , Fibroblastos/metabolismo , Linhagem Celular Tumoral
3.
Acta Biomater ; 147: 73-90, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35551999

RESUMO

In this manuscript we report the establishment and characterization of a three-dimensional in vitro, coculture engineered prostate cancer tissue (EPCaT) disease model based upon and informed by our characterization of in vivo prostate cancer (PCa) xenograft tumor stiffness. In prostate cancer, tissue stiffness is known to impact changes in gene and protein expression, alter therapeutic response, and be positively correlated with an aggressive clinical presentation. To inform an appropriate stiffness range for our in vitro model, PC-3 prostate tumor xenografts were established. Tissue stiffness ranged from 95 to 6,750 Pa. Notably, xenograft cell seeding density significantly impacted tumor stiffness; a two-fold increase in the number of seeded cells not only widened the tissue stiffness range throughout the tumor but also resulted in significant spatial heterogeneity. To fabricate our in vitro EPCaT model, PC-3 castration-resistant prostate cancer cells were co-encapsulated with BJ-5ta fibroblasts within a poly(ethylene glycol)-fibrinogen matrix augmented with excess poly(ethylene glycol)-diacrylate to modulate the matrix mechanical properties. Encapsulated cells temporally remodeled their in vitro microenvironment and enrichment of gene sets associated with tumorigenic progression was observed in response to increased matrix stiffness. Through variation of matrix composition and culture duration, EPCaTs were tuned to mimic the wide range of biomechanical cues provided to PCa cells in vivo; collectively, a range of 50 to 10,000 Pa was achievable. Markedly, this also encompasses published clinical PCa stiffness data. Overall, this study serves to introduce our bioinspired, tunable EPCaT model and provide the foundation for future PCa progression and drug development studies. STATEMENT OF SIGNIFICANCE: The development of cancer models that mimic the native tumor microenvironment (TME) complexities is critical to not only develop effective drugs but also enhance our understanding of disease progression. Here we establish and characterize our 3D in vitro engineered prostate cancer tissue model with tunable matrix stiffness, that is inspired by this study's spatial characterization of in vivo prostate tumor xenograft stiffness. Notably, our model's mimicry of the TME is further augmented by the inclusion of matrix remodeling fibroblasts to introduce cancer-stromal cell-cell interactions. This study addresses a critical unmet need in the field by elucidating the prostate tumor xenograft stiffness range and establishing a foundation for recapitulating the biomechanics of site-of-origin and soft tissue metastatic prostate tumors in vitro.


Assuntos
Hidrogéis , Neoplasias da Próstata , Linhagem Celular Tumoral , Humanos , Masculino , Células PC-3 , Polietilenoglicóis , Neoplasias da Próstata/metabolismo , Engenharia Tecidual , Microambiente Tumoral
4.
Biofabrication ; 14(4)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617932

RESUMO

The development of physiologically relevantin vitrocolorectal cancer (CRC) models is vital for advancing understanding of tumor biology. Although CRC patient-derived xenografts (PDXs) recapitulate key patient tumor characteristics and demonstrate high concordance with clinical outcomes, the use of thisin vivomodel is costly and low-throughput. Here we report the establishment and in-depth characterization of anin vitrotissue-engineered CRC model using PDX cells. To form the 3D engineered CRC-PDX (3D-eCRC-PDX) tissues, CRC PDX tumors were expandedin vivo, dissociated, and the isolated cells encapsulated within PEG-fibrinogen hydrogels. Following PEG-fibrinogen encapsulation, cells remain viable and proliferate within 3D-eCRC-PDX tissues. Tumor cell subpopulations, including human cancer and mouse stromal cells, are maintained in long-term culture (29 days); cellular subpopulations increase ratiometrically over time. The 3D-eCRC-PDX tissues mimic the mechanical stiffness of originating tumors. Extracellular matrix protein production by cells in the 3D-eCRC-PDX tissues resulted in approximately 57% of proteins observed in the CRC-PDX tumors also being present in the 3D-eCRC-PDX tissues on day 22. Furthermore, we show congruence in enriched gene ontology molecular functions and Hallmark gene sets in 3D-eCRC-PDX tissues and CRC-PDX tumors compared to normal colon tissue, while prognostic Kaplan-Meier plots for overall and relapse free survival did not reveal significant differences between CRC-PDX tumors and 3D-eCRC-PDX tissues. Our results demonstrate high batch-to-batch consistency and strong correlation between ourin vitrotissue-engineered PDX-CRC model and the originatingin vivoPDX tumors, providing a foundation for future studies of disease progression and tumorigenic mechanisms.


Assuntos
Neoplasias Colorretais , Engenharia Tecidual , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Fibrinogênio , Xenoenxertos , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Sci Rep ; 8(1): 3171, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453454

RESUMO

Assessment of anti-cancer drug efficacy in in vitro three-dimensional (3D) bioengineered cancer models provides important contextual and relevant information towards pre-clinical translation of potential drug candidates. However, currently established models fail to sufficiently recapitulate complex tumor heterogeneity. Here we present a chip-based tumor-mimetic platform incorporating a 3D in vitro breast cancer model with a tumor-mimetic microvascular network, replicating the pathophysiological architecture of native vascularized breast tumors. The microfluidic platform facilitated formation of mature, lumenized and flow-aligned endothelium under physiological flow recapitulating both high and low perfused tumor regions. Metastatic and non-metastatic breast cancer cells were maintained in long-term 3D co-culture with stromal fibroblasts in a poly(ethylene glycol)-fibrinogen hydrogel matrix within adjoining tissue chambers. The interstitial space between the chambers and endothelium contained pores to mimic the "leaky" vasculature found in vivo and facilitate cancer cell-endothelial cell communication. Microvascular pattern-dependent flow variations induced concentration gradients within the 3D tumor mass, leading to morphological tumor heterogeneity. Anti-cancer drugs displayed cell type- and flow pattern-dependent effects on cancer cell viability, viable tumor area and associated endothelial cytotoxicity. Overall, the developed microfluidic tumor-mimetic platform facilitates investigation of cancer-stromal-endothelial interactions and highlights the role of a fluidic, tumor-mimetic vascular network on anti-cancer drug delivery and efficacy for improved translation towards pre-clinical studies.


Assuntos
Antineoplásicos/farmacologia , Biomimética/instrumentação , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Microvasos/efeitos dos fármacos , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Células MCF-7 , Microvasos/fisiologia , Microambiente Tumoral/efeitos dos fármacos
6.
J Biomed Mater Res A ; 105(1): 236-252, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27615742

RESUMO

Tissue-engineered three-dimensional (3D) cancer models employing biomimetic hydrogels as cellular scaffolds provide contextual in vitro recapitulation of the native tumor microenvironment, thereby improving their relevance for use in cancer research. This study reports the use of poly(ethylene glycol)-fibrinogen (PF) as a suitable biosynthetic hydrogel for the 3D culture of three breast cancer cell lines: MCF7, SK-BR-3, and MDA-MB-231. Modification of the matrix characteristics of PF hydrogels was achieved by addition of excess poly(ethylene glycol) diacrylate, which resulted in differences in Young's moduli, degradation behavior, release kinetics, and ultrastructural variations in scaffold microarchitecture. Cancer cells were maintained in 3D culture with high viability within these hydrogels and resulted in cell-type dependent morphological changes over time. Cell proliferation and 3D morphology within the hydrogels were visualized through immunofluorescence staining. Finally, spatial heterogeneity of colony area within the hydrogels was quantified, with peripheral cells forming colonies of higher area compared to those in the interior regions. Overall, PF-based hydrogels facilitate 3D culture of breast cancer cells and investigation of cellular behavior in response to varying matrix characteristics. PF-based cancer models could be potentially used in future investigations of cancer biology and in anti-cancer drug-testing applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 236-252, 2017.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Fibrinogênio , Hidrogéis , Modelos Biológicos , Polietilenoglicóis , Neoplasias da Mama/patologia , Feminino , Fibrinogênio/química , Fibrinogênio/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Células MCF-7 , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
7.
Tissue Eng Part B Rev ; 22(6): 470-484, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27302080

RESUMO

Biomimetic polymers and materials have been widely used in tissue engineering for regeneration and replication of diverse types of both normal and diseased tissues. Cancer, being a prevalent disease throughout the world, has initiated substantial interest in the creation of tissue-engineered models for anticancer drug testing. The development of these in vitro three-dimensional (3D) culture models using novel biomaterials has facilitated the investigation of tumorigenic and associated biological phenomena with a higher degree of complexity and physiological context than that provided by established two-dimensional culture models. In this review, an overview of a wide range of natural, synthetic, and hybrid biomaterials used for 3D cancer cell culture and investigation of cancer cell behavior is presented. The role of these materials in modulating cell-matrix interactions and replicating specific tumorigenic characteristics is evaluated. In addition, recent advances in biomaterial design, synthesis, and fabrication are also assessed. Finally, the advantages of incorporating polymeric biomaterials in 3D cancer models for obtaining efficacy data in anticancer drug testing applications are highlighted.


Assuntos
Engenharia Tecidual , Materiais Biocompatíveis , Biomimética , Técnicas de Cultura de Células , Humanos , Neoplasias , Polímeros
8.
ACS Nano ; 5(9): 7488-93, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21854062

RESUMO

Vertical stacks of electrically confined quantum wires were demonstrated in devices with large areas. Multiple current plateaus and strong differential conductance oscillations were observed at above liquid nitrogen temperatures because of interlevel cascade transition of carriers. Our simulation results for charge transport, as well as interlevel infrared photoresponse red-shift, due to lateral electric field confinement show good agreement with experimental data.


Assuntos
Nanofios , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...