Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(23): 24356-24361, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882077

RESUMO

Extracting photons efficiently from quantum sources, such as atoms, molecules, and quantum dots, is crucial for various nanophotonic systems used in quantum communication, sensing, and computation. To improve the performance of these systems, it is not only necessary to provide an environment that maximizes the number of optical modes, but it is also desirable to guide the extracted light toward specific directions. One way to achieve this goal is to use a large area metasurface that can steer the beam. Previous work has used small aperture devices that are fundamentally limited in their ability to achieve high directivity. This work proposes an adjoint-based topology optimization approach to design a large light extractor that can enhance the spontaneous decay rate of the embedded quantum transition and collimate the extracted photons. With the help of this approach, we present all-dielectric metasurfaces for a quantum transition emitting at λ = 600 nm. These metasurfaces achieve a broadband improvement of spontaneous emission compared to that in the vacuum, reaching a 10× enhancement at the design frequency. Furthermore, they can beam the extracted light into a narrow cone (±10°) along a desired direction that is predefined through their respective design process.

2.
Opt Express ; 31(2): 2710-2725, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785279

RESUMO

We investigate entanglement mediated by DC current induced nonreciprocal graphene plasmon polaritons. Nonreciprocal systems are ideal for the enhancement, control, and preservation of entanglement due to the potential for unidirectional beam-like wave propagation, i.e., efficiently transporting photons from one emitter to another. Using a quantum master equation and three-dimensional Green's function analysis, we investigate a system consisting of two two-level emitters dominantly interacting via electric current induced nonreciprocal plasmonic modes of a graphene waveguide. We use concurrence as a measure of entanglement. We show that nonreciprocal graphene plasmon polaritons are a promising candidate to generate and mediate concurrence, where it is shown that there is good enhancement and control of entanglement over vacuum, which is beneficial for the broad applications of entanglement as a quantum resource. We believe our findings contribute to the development of quantum devices, enabling efficient and tunable entanglement between two-level systems, which is a central goal in quantum technologies.

3.
Phys Rev Lett ; 124(15): 153901, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357023

RESUMO

In this Letter, we discuss two general classes of apparent violations of the bulk-edge correspondence principle for continuous topological photonic materials, associated with the asymptotic behavior of the surface modes for diverging wave numbers. Considering a nonreciprocal plasma as a model system, we show that the inclusion of spatial dispersion (e.g., hydrodynamic nonlocality) formally restores the bulk-edge correspondence by avoiding an unphysical response at large wave numbers. Most importantly, however, our findings show that, for the considered cases, the correspondence principle is physically violated for all practical purposes, as a result of the unavoidable attenuation of highly confined modes even if all materials are assumed perfect, with zero intrinsic bulk losses, due to confinement-induced Landau damping or nonlocality-induced radiation leakage. Our work helps clarifying the subtle and rich topological wave physics of continuous media.

4.
Phys Rev Lett ; 121(9): 093901, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230859

RESUMO

Electromagnetic waves propagating in conventional wave-guiding structures are reflected by discontinuities and decay in lossy regions. In this Letter, we drastically modify this typical guided-wave behavior by combining concepts from non-Hermitian physics and topological photonics. To this aim, we theoretically study, for the first time, the possibility of realizing an exceptional point between coupled topological modes in a non-Hermitian nonreciprocal waveguide. Our proposed system is composed of oppositely biased gyrotropic materials (e.g., biased plasmas or graphene layers) with a balanced distribution of loss and gain. To study this complex wave-guiding problem, we put forward an exact analysis based on classical Green's function theory, and we elucidate the behavior of coupled topological modes and the nature of their non-Hermitian degeneracies. We find that, by operating near an exceptional point, we can realize anomalous topological wave propagation with, at the same time, low group velocity, inherent immunity to backscattering at discontinuities, and immunity to losses. These theoretical findings may open exciting research directions and stimulate further investigations of non-Hermitian topological waveguides to realize robust wave propagation in practical scenarios.

6.
Sci Rep ; 6: 30055, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27444542

RESUMO

We have investigated one-way surface plasmon-polaritons (SPPs) at the interface of a continuum magnetoplasma material and metal, in the presence of three-dimensional surface defects. Bulk electromagnetic modes of continuum materials have Chern numbers, analogous to those of photonic crystals. This can lead to the appearance of topologically-protected surface modes at material interfaces, propagating at frequencies inside the bandgap of the bulk materials. Previous studies considered two-dimensional structures; here we consider the effect of three-dimensional defects, and show that, although backward propagation/reflection cannot occur, side scattering does take place and has significant effect on the propagation of the surface mode. Several different waveguiding geometries are considered for reducing the effects of side-scattering, and we also consider the effects of metal loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...