Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 29(8): 083125, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472517

RESUMO

Spreading phenomena like opinion formation or disease propagation often follow the links of some underlying network structure. While the effects of network topology on spreading efficiency have already been vastly studied, we here address the inverse problem of whether we can infer an unknown network structure from the timing of events observed at different nodes. For this purpose, we numerically investigate two types of event-based stochastic processes. On the one hand, a generic model of event propagation on networks is considered where the nodes exhibit two types of eventlike activity: spontaneous events reflecting mutually independent Poisson processes and triggered events that occur with a certain probability whenever one of the neighboring nodes exhibits any of these two kinds of events. On the other hand, we study a variant of the well-known SIRS model from epidemiology and record only the timings of state switching events of individual nodes, irrespective of the specific states involved. Based on simulations of both models on different prototypical network architectures, we study the pairwise statistical similarity between the sequences of event timings at all nodes by means of event synchronization and event coincidence analysis (ECA). By taking strong mutual similarities of event sequences (functional connectivity) as proxies for actual physical links (structural connectivity), we demonstrate that both approaches can lead to reasonable prediction accuracy. In general, sparser networks can be reconstructed more accurately than denser ones, especially in the case of larger networks. In such cases, ECA is shown to commonly exhibit the better reconstruction accuracy.

2.
Phys Rev E ; 96(2-1): 022307, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950580

RESUMO

The aim of the paper is an analysis of self-organization patterns observed in the unidirectional flow of pedestrians. On the basis of experimental data from Zhang et al. [J. Zhang et al., J. Stat. Mech. (2011) P0600410.1088/1742-5468/2011/06/P06004], we analyze the mutual positions and velocity correlations between pedestrians when walking along a corridor. The angular and spatial dependencies of the mutual positions reveal a spatial structure that remains stable during the crowd motion. This structure differs depending on the value of n, for the consecutive nth-nearest-neighbor position set. The preferred position for the first-nearest neighbor is on the side of the pedestrian, while for further neighbors, this preference shifts to the axis of movement. The velocity correlations vary with the angle formed by the pair of neighboring pedestrians and the direction of motion and with the time delay between pedestrians' movements. The delay dependence of the correlations shows characteristic oscillations, produced by the velocity oscillations when striding; however, a filtering of the main frequency of individual striding out reduces the oscillations only partially. We conclude that pedestrians select their path directions so as to evade the necessity of continuously adjusting their speed to their neighbors'. They try to keep a given distance, but follow the person in front of them, as well as accepting and observing pedestrians on their sides. Additionally, we show an empirical example that illustrates the shape of a pedestrian's personal space during movement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...