Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 35(10): 1253-1263, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33632003

RESUMO

Biocompatible, biodegradable, and injectable hydrogels are a novel and promising approach for bone regeneration. In this study, poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone) (PCL-PEG-PCL), PCL-PEG-PCL-gelatin (Gel), PCL-PEG-PCL-Gel/nano-hydroxyapatite (nHA) injectable hydrogels were synthesized and evaluated in a mouse model of subcutaneous transplantation after 14 days. PCL-PEG-PCL-Gel and PCL-PEG-PCL-Gel/nHA hydrogels were fabricated with in situ precipitation method. Structure, intermolecular interaction, and the reaction between the PCL-PEG-PCL, Gel, and nHA were evaluated using a scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (H-NMR), and carbon nuclear magnetic resonance (C-NMR). Fourteen days after subcutaneous injection, the existence of an immune system reaction was investigated using Hematoxylin and Eosin (H&E) staining. Using immunofluorescence imaging, the number of CD68+ cells was determined in the periphery of the hydrogel. The CD8/CD4 lymphocyte ratio was also calculated in blood samples. We monitored the expression of CCL-2, BCL-2, IL-10, and CD31 using real-time PCR assay. The chemical evaluation revealed the successful integration of Gel and nHA to the PCL-PEG-PCL backbone. Histological examination showed the lack of inflammation at the site of injection. No toxicological effects were determined in hepatic and renal tissues. The addition of nHA to the PCL-PEG-PCL-Gel decreased biodegradation time. None of the hydrogels caused statistically significant differences in the number of CD68 cells (p > 0.05). The CD8/CD4 lymphocyte ratio remained unchanged in all groups (p > 0.05). Compared to the PCL-PEG-PCL group, the addition of nHA and Gel increased the expression of CCL-2, BCL-2, IL-10, and CD31 (p < 0.05). In conclusion, the current study showed that PCL-PEG-PCL-Gel/nHA hydrogels could be used in in vivo conditions without prominent toxic effects and inflammatory responses.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Hidrogéis/química , Nanoestruturas/química , Poliésteres/química , Polietilenoglicóis/química , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Durapatita/metabolismo , Durapatita/farmacologia , Gelatina/química , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Injeções Subcutâneas , Rim/patologia , Fígado/patologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reologia
2.
Artif Cells Nanomed Biotechnol ; 49(1): 136-146, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33507104

RESUMO

Injectable hydrogels attract more attention to hard tissue engineering for the fulfilment of the defects with irregular shapes. Therefore, the researchers investigated the biocompatibility and immune response to the injectable PCL-PEG-PCL-Col/nHA hydrogels in a mouse model. The histological examination was done via H&E. The activation of the immune cells was evaluated by using antibodies against the CD68, CD4, and CD8 markers. The expression of CCL-2, BCL-2, IL-10, and CD31 genes was measured. Moreover, serum levels of the ALT, ALP, AST, and Urea were detected. The results of the chemical analysis showed that the collagen and Nano-hydroxyapatite were successfully integrated into the PCL-PEG-PCL hydrogels. The histological examination revealed a delayed biodegradation rate after the addition of the collagen and Nano-hydroxyapatite. No prominent pro-inflammatory response was found at the site of the injection. There are no significant differences in the levels of the CD68 and CD8/CD4 lymphocyte ratio among groups (p > .05). The expression of the CD31, IL-10 was significantly increased in the PCL-PEG-PCL-Col/nHA hydrogel (p < .05). ALT, ALP, AST, and Urea levels were not altered pre- and post-transplantation of the hydrogels (p > .05). These in vivo results demonstrated that the injectable PCL-PEG-PCL-Col/nHA hydrogels are biocompatible and suitable for further research in hard tissue regeneration.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Colágeno/química , Colágeno/farmacologia , Durapatita/química , Durapatita/farmacologia , Hidrogéis/química , Animais , Materiais Biocompatíveis/administração & dosagem , Regeneração Óssea/efeitos dos fármacos , Colágeno/administração & dosagem , Durapatita/administração & dosagem , Injeções , Camundongos , Engenharia Tecidual/métodos , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...