Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 257: 115513, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37253308

RESUMO

The identification of small molecules capable of replacing transcription factors has been a longstanding challenge in the generation of human chemically induced pluripotent stem cells (iPSCs). Recent studies have shown that ectopic expression of OCT4, one of the master pluripotency regulators, compromised the developmental potential of resulting iPSCs, This highlights the importance of finding endogenous OCT4 inducers for the generation of clinical-grade human iPSCs. Through a cell-based high throughput screen, we have discovered several new OCT4-inducing compounds (O4Is). In this work, we prepared metabolically stable analogues, including O4I4, which activate endogenous OCT4 and associated signaling pathways in various cell lines. By combining these with a transcription factor cocktail consisting of SOX2, KLF4, MYC, and LIN28 (referred to as "CSKML") we achieved to reprogram human fibroblasts into a stable and authentic pluripotent state without the need for exogenous OCT4. In Caenorhabditis elegans and Drosophila, O4I4 extends lifespan, suggesting the potential application of OCT4-inducing compounds in regenerative medicine and rejuvenation therapy.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Fator 4 Semelhante a Kruppel , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento , Diferenciação Celular
2.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38256875

RESUMO

In the rapidly evolving landscape of genetic engineering, the advent of CRISPR-Cas technologies has catalyzed a paradigm shift, empowering scientists to manipulate the genetic code with unprecedented accuracy and efficiency. Despite the remarkable capabilities inherent to CRISPR-Cas systems, recent advancements have witnessed the integration of small molecules to augment their functionality, introducing new dimensions to the precision and versatility of gene editing applications. This review delves into the synergy between CRISPR-Cas technologies based specifically on Cas9 and small-molecule drugs, elucidating the pivotal role of chemicals in optimizing target specificity and editing efficiency. By examining a diverse array of applications, ranging from therapeutic interventions to agricultural advancements, we explore how the judicious use of chemicals enhances the precision of CRISPR-Cas9-mediated genetic modifications. In this review, we emphasize the significance of small-molecule drugs in fine-tuning the CRISPR-Cas9 machinery, which allows researchers to exert meticulous control over the editing process. We delve into the mechanisms through which these chemicals bolster target specificity, mitigate off-target effects, and contribute to the overall refinement of gene editing outcomes. Additionally, we discuss the potential of chemical integration in expanding the scope of CRISPR-Cas9 technologies, enabling tailored solutions for diverse genetic manipulation challenges. As CRISPR-Cas9 technologies continue to evolve, the integration of small-molecule drugs emerges as a crucial avenue for advancing the precision and applicability of gene editing techniques. This review not only synthesizes current knowledge but also highlights future prospects, paving the way for a deeper understanding of the synergistic interplay between CRISPR-Cas9 systems and chemical modulators in the pursuit of more controlled and efficient genetic modifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...