Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 48-58, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814235

RESUMO

Probiotics have been used successfully in aquaculture to enhance disease resistance, nutrition, and/or growth of cultured organisms. Six strains of Bacillus were isolated from the intestinal tracts of fish and recognised by conventional biochemical traits. The six isolated strains were Bacillus cereus and Bacillus subtilis using MALDI-TOF-MS technique. The probiotic properties of these Bacillus strains were studied. The tested bacillus strains exhibit antibacterial activity against the different pathogens. The strain S5 gave the important inhibition zones against most pathogens (20.5, 20.33, 23, and 21 mm against Vibrio alginolyticus, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella typhimurium, respectively). According to our results, all Bacillus strains have extracellular components that can stop pathogenic bacteria from growing. The enzymatic characterization showed that the tested strains can produce several biotechnological enzymes such as α-glucosidase, naphtol-AS-BI-Phosphohydrolase, esterase lipase, acid phosphatase, alkaline phosphatase, amylase, lipase, caseinase, and lecithinase. All Bacillus strains were adhesive to polystyrene. The adding Bacillus strains to the Artemia culture exerted significantly greater effects on the survival of Artemia. The challenge test on Artemia culture showed that the protection against pathogenic Vibrio was improved. These findings allow us to recommend the examined strains as prospective probiotic options for the Artemia culture, which will be used as food additives to improve the culture conditions of crustacean larvae and marine fish.


Assuntos
Artemia , Bacillus , Peixes , Trato Gastrointestinal , Probióticos , Animais , Probióticos/farmacologia , Artemia/microbiologia , Bacillus/enzimologia , Bacillus/isolamento & purificação , Trato Gastrointestinal/microbiologia , Peixes/microbiologia , Vibrio/patogenicidade , Vibrio/efeitos dos fármacos , Antibacterianos/farmacologia , Antibiose
2.
Neurooncol Adv ; 5(1): vdad095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781087

RESUMO

Background: Medulloblastoma is the most common malignant pediatric brain tumor, and leptomeningeal dissemination (LMD) of medulloblastoma both portends a poorer prognosis at diagnosis and is incurable at recurrence. The biological mechanisms underlying LMD are unclear. The Abelson (ABL) tyrosine kinase family members, ABL1 and ABL2, have been implicated in cancer cell migration, invasion, adhesion, metastasis, and chemotherapy resistance, and are upstream mediators of the oncogene c-MYC in fibroblasts and lung cancer cells. However, their role in medulloblastoma has not yet been explored. The purpose of this work was to elucidate the role of ABL1/2 in medulloblastoma LMD. Methods: ABL1 and ABL2 mRNA expression of patient specimens was analyzed. shRNA knockdowns of ABL1/2 and pharmacologic inhibition of ABL1/2 were used for in vitro and in vivo analyses of medulloblastoma LMD. RNA sequencing of ABL1/2 genetic knockdown versus scrambled control medulloblastoma was completed. Results: ABL1/2 mRNA is highly expressed in human medulloblastoma and pharmacologic inhibition of ABL kinases resulted in cytotoxicity. Knockdown of ABL1/2 resulted in decreased adhesion of medulloblastoma cells to the extracellular matrix protein, vitronectin (P = .0013), and significantly decreased tumor burden in a mouse model of medulloblastoma LMD with improved overall survival (P = .0044). Furthermore, both pharmacologic inhibition of ABL1/2 and ABL1/2 knockdown resulted in decreased expression of c-MYC, identifying a putative signaling pathway, and genes/pathways related to oncogenesis and neurodevelopment were differentially expressed between ABL1/2 knockdown and control medulloblastoma cells. Conclusions: ABL1 and ABL2 have potential roles in medulloblastoma LMD upstream of c-MYC expression.

3.
J Environ Health Sci Eng ; 21(2): 373-387, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37869599

RESUMO

This study focused on the potential for pentachlorophenol removal by a biological process in secondary treated wastewater (STWW). The proposed process is a combined method of phytoremediation using a native plant, Polypogon maritimus and Lemna minor, and bioaugmentation using a fungus. The bioaugmentation process was performed by a fungal isolate capable of removing PCP, isolated from the compost. The identification of the fungus was performed by morphological, biochemical, and molecular methods. A biological treatment system by bioaugmentation and phytoremediation was set up to estimate the capacity of this process to eliminate a high concentration of PCP. physico-chemical parameters, such as pH, COD, and BOD were tested at experimentation times T0 (initial) and Tf (final). The concentration of PCP is controlled by the HPLC method. Thus, the growth of the fungus was determined by spectrophotometry and enumeration on the agar medium. The results obtained show that the isolated and selected fungus is identified by Penicillium Ilerdanum. The fungal strain used has a significant capacity for tolerance and elimination of PCP. The results of the physico-chemical parameters showed an improvement in the quality of wastewater after the treatment was carried out. The elimination of PCP came with a release of Common law- and an important decrease in the DOC value in the STWW. The results obtained show that the Polypogon treatment shows a significant elimination of PCP by a percentage of the order of 92.01% and 23.58 g. L- 1 chloride concentration. The macrophytes used showed a better ability to tolerate and eliminate PCP with an increase of chlorophyll and its longer sheets. Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-023-00865-y.

4.
Int J Phytoremediation ; 25(11): 1474-1487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36606367

RESUMO

The aim of this study was the comparison of two process in pentachlorophenol (PCP: 100 mg L-1) removal by combined process bioaugmentation-adsorption and bioaugmentation-phytoremediation in secondary treated wastewater (STWW). The phytoremediation procedure was conducted by using two plants such as Typha angustifolia and Schoenoplectus acutus, and the bioaugmentation procedure was operated by Pseudomonas putida HM 627618 as a plant growth promoting bacteria (PGPR). The adsorption process was performed by palm date activated carbon. The PCP monitoring was assessed by high performance liquid chromatography (HPLC) and the optical density determination at 600 nm (OD600). The performance of the two processes was observed by the determination of total bacteria, chlorophylls and physical and chemical analysis (COD, pH, conductivity, chloride, and organic carbon). The alfalfa seed germination test was conducted to assess the two operational performance procedures. According to the results obtained from the physical and chemical analysis of the treated STWW, there was no significant differences in the pH and in the EC content of the bioaugmentation-phytoremediation treatment, while a significant increase of the EC content was observed in the bioaugmentation-adsorption to 5.08 mS cm-1. The COD value significantly decreased up to 1320 mg L-1 in bioaugmentation-adsorption treatment (control value 2400 mg L-1) and 98 mg L-1 in bioaugmentation-phytoremediation treatment (control value 98 mg L-1). Microbial biomass monitoring of P. putida shows significant greater in both processes in the order of 9.18 and 7.01 Log CFU mL-1 for bioaugmentation-adsorption and bioaugmentation-phytoremediation, respectively. The chlorophyll content in Typha angustifolia and Schoenoplectus acutus significantly decreased after 144 h with the exception of the chlorophyll a content of Schoenoplectus acutus in which the content increased up to 3.31 mg mL-1. Comparing the performance of these two treatments, it was found according to HPLC analysis that the bioaugmentation-adsorption process was more efficient in removing about 97% of PCP after 48 h, against around 90% of PCP after 72 h for the phytoremediation-bioaugmentation. The alfalfa seeds showed a germination rate after the 5th day of incubation of 100% and 95%, respectively for the PCP-non-contaminated and treated STWW, while for wastewater containing PCP the germination was totally inhibited.


This paper describing sensitive methods of combined bioaugmentation-phytoremediation and bioaugmentation-adsorption for pentachlorophenol (PCP) depletion in wastewater. The novelty is the choice of a macrophyte Typha angustifolia and Schoenoplectus acutus in constructed wetland fixed in clay matrix. The two-selected plants are still used for the elimination of heavy metals but not for pesticide in wastewater. Also, the combined process bioaugmentation-adsorption was not tested in other researches. On the other side, in this study, the phytoremediation technique combined with bacteria positively affected the plants activity in order to promote pollutant remediation. Hence, the Pseudomonas putida HM 627618 in wastewater with the macrophyte presence or date stone adsorbent have a great capacity to reduce this pollutant (PCP) by improving the bioremediation process.


Assuntos
Praguicidas , Águas Residuárias , Biodegradação Ambiental , Adsorção , Clorofila A
5.
Biomed Res Int ; 2022: 6065305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177057

RESUMO

Effluents discharged by poultry meat industries are heavily polluted with raw materials, such as fat, blood residues, and proteins. Thus, untreated effluents directly discharged into the environment may constitute a public health threat. This study aims to evaluate the bacterial diversity of three water qualities: industrial poultry wastewater (PWW), tap water (TW), and PWW diluted with TW (50 : 50) (V/V) (TWPWW) by the combination of culture-independent and culture-dependent approaches. The total bacterial DNA was extracted using phenol/chloroform method. The hypervariable 16S rRNA region V3-V5 was amplified by PCR using universal primers. The amplicons were separated by vertical electrophoresis on a polyacrylamide gel of increasing denaturing gradient according to their richness in GC bases. Selected bands were reamplified and sequenced. Pure isolated bacteria from nutrient agar medium were characterized according to their morphological and biochemical characteristics. Genomic DNA from pure strains was extracted by boiling method, and a molecular amplification of the 16S-23S ITS region of the 16S rRNA gene was performed using the universal primers. Selected isolates were identified by sequencing. Results showed a high bacterial load and diversity in PWW in comparison with TW and TWPWW. A collection of 44 strains was obtained, and 25 of them were identified by sequencing. Proteobacteria represented 76% of isolated bacteria Gamma-Proteobacteria was the predominate isolate (68%). Other isolates were Firmicutes (8%), Bacteroidetes (12%), and Actinobacteria (8%). These isolates belong to different genera, namely, Pseudomonas, Acinetobacter, Proteus, Empedobacter, Corynebacterium, Enterobacter, Comamonas, Frondibacter, Leclercia, Staphylococcus, Atlantibacter, Klebsiella, and Microbacterium.


Assuntos
Aves Domésticas , Águas Residuárias , Ágar , Agricultura , Animais , Bactérias , Clorofórmio/análise , Primers do DNA , DNA Bacteriano , Eletroforese em Gel de Gradiente Desnaturante , Fenóis/análise , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Águas Residuárias/análise , Água
6.
Arch Microbiol ; 204(4): 229, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35353264

RESUMO

Faced with the significant disturbances, mainly of anthropogenic origin, which affect the Mediterranean coastal ecosystem, Posidonia oceanica (L.) Delile has often been used to assess the state of health of this environment. The present study aims to determine the multidrug resistance patterns among isolated and identified epi-endophytic bacterial strains in P. oceanica seagrass collected from Mahdia coastal seawater (Tunisia). To investigate the bacterial community structure and diversity from coastal seawater samples from Mahdia, total DNA extraction and 16S rRNA gene amplification were performed and analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed that some bands were specific to a given site, while other bands were found to be common to more than one sample. In the other hand, bacterial strains were isolated from 1 mL of leaves and epiphytes suspension of P. oceanica seagrass in marine agar. Forty-three isolates were obtained, seven of them were selected and identified on the basis of 16S rRNA gene sequence analysis. These isolates belonged to the genus Bacillus, exhibiting 98-100% of identity with known sequences. Susceptibility patterns of these strains were studied toward commonly used antibiotics in Tunisia. All identified isolates were resistant to Aztreonam (72.1%), Ceftazidime (60.5%), Amoxicillin (56%) and Rifampicin (51.2%). S5-L13 strain had presented the highest multidrug resistance with a MAR index of 0.67.


Assuntos
Alismatales , Monitoramento Biológico , Alismatales/genética , Alismatales/microbiologia , Antibacterianos/farmacologia , Ecossistema , RNA Ribossômico 16S/genética
7.
Extracell Vesicle ; 12022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37503329

RESUMO

Dysregulated Myc signaling is a key oncogenic pathway in glioblastoma multiforme (GBM). Yet, effective therapeutic targeting of Myc continues to be challenging. Here, we demonstrate that exosomes generated from human bone marrow mesenchymal stem cells (MSCs) engineered to encapsulate siRNAs targeting Myc (iExo-Myc) localize to orthotopic GBM tumors in mice. Treatment of late stage GBM tumors with iExo-Myc inhibits proliferation and angiogenesis, suppresses tumor growth, and extends survival. Transcriptional profiling of tumors reveals that the mesenchymal transition and estrogen receptor signaling pathways are impacted by Myc inhibition. Single nuclei RNA sequencing (snRNA-seq) shows that iExo-Myc treatment induces transcriptional repression of multiple growth factor and interleukin signaling pathways, triggering a mesenchymal to proneural transition and shifting the cellular landscape of the tumor. These data confirm that Myc is an effective anti-glioma target and that iExo-Myc offers a feasible, readily translational strategy to inhibit challenging oncogene targets for the treatment of brain tumors.

8.
Int J Phytoremediation ; 24(3): 271-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34121527

RESUMO

This study has contributed in the description of bioaugmentation-phytoremediation efficiency process using Typha angustifolia concerning PCP tolerance and removal from wastewater. Samples of wastewater were collected from industrial wastewater plants, namely row wastewater effluent "E.WW", primary wastewater "P.WW", secondary wastewater "S.WW", clarified wastewater "AC.WW". These effluents were spiked with PCP at different rate (100, 500, and 1000 mg.L-1), physical, chemical and biological properties were monitored. A second experiment was set up in order to check the efficiency of phytoremediation treatments of the different effluents artificially contaminated with 200 mg.L-1 PCP after 20 days lab scale experiment. An important PCP removal by indigenous bacteria was showed in S. WW with values from 1000 to 72.2 mg.L-1 from T0 (start of the experiment) to TF (end of the experiment), respectively. Phytoremediation process allowed a decrease of PCP rate from 200 to 6.4 mg.L-1, a decrease of chloride content from 14.0 to 4.0 mg.L-1 in S.WW samples was observed. Furthermore, a significant increase of bacterial number in S.WW and AC.WW to 1.700 × 106 and 1.450 × 106 CFU.mL-1, respectively was observed. In addition, the DGGE analysis showed that after bioaugmentation-phytoremediation treatments, the highest species richness and relative abundance in wastewater effluent was observed. Novelty statement Pentachlorophenol (PCP) is one of highly toxic of polychlorophenols and required to continuously monitor in environment. This paper presenting a sensitive method phytoremediation and bioaugmentation for PCP biotransformation in wastewater. The novelty is the choice of a macrophyte Typha angustifolia, which is still used for the elimination of heavy metals but it not used for pesticide and pollutant removal in wastewater. Also, there are different analysis that was performed in order to check phyto-technique process (DGGE and HPLC). On the other side, in this study, the phyto-techniques with Typha angustifolia positively affected intrinsic microorganisms in order to promote pollutant remediation. So, the intrinsic microorganisms in wastewater with the macrophyte presence have a great capacity to reduce this pollutant and improve the bioremediation process.


Assuntos
Metais Pesados , Pentaclorofenol , Typhaceae , Biodegradação Ambiental , Águas Residuárias
9.
Water Sci Technol ; 84(10-11): 3091-3103, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34850714

RESUMO

The phytoremediation procedure was conducted by Lemna gibba (L) and Typha angustifolia (T) and the bioaugmentation procedure used P. putida HM627618. The ability of the selected P. putida HM627618 to tolerate and remove PCP (200 mg L-1) was measured by high performance liquid chromatography analysis and optical density at 600 nm. Five different experiments were conducted in secondary treated wastewater for PCP testing removal (100 mg L-1) including two phytoremediation assays (T + PCP; L + PCP), three bioaugmentation-phytoremediation assays (T + B + PCP; L + B + PCP; L + T + B + PCP) and a negative control assay with PCP. Various analytical parameters were determined in this study such as bacterial count, chlorophylls a and b, COD, pH and PCP content. The main results showed that the average PCP removal by P. putida HM627618 was around 87.5% after 7 days of incubation, and 88% of PCP removal was achieved by treatment (T + B) after 9 days. During these experiments, pH, COD and chloride content showed a net increase in all treatments. The chlorophylls a and b in case of (T) and (L) Chlorophylls a and b for T and L phytoremediation showed a decrease with a value less than 10 µg/mg of fresh material after 20 days of cultivation.


Assuntos
Araceae , Pentaclorofenol , Biodegradação Ambiental , Águas Residuárias
10.
Polymers (Basel) ; 13(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771355

RESUMO

In this work, a native exopolysaccharide (nEPS) produced by Halomonas desertis G11 isolated from a Tunisian extreme environment was modified by gamma irradiation. Characterization as well as the antioxidant and antitumor activities of nEPS and its gamma-irradiated derivatives (iEPSs) were comparatively evaluated. In vitro and in vivo antioxidant potentials were determined by using different methods and through different antioxidant enzymes. The antitumor activity was checked against a human colon cancer cell line. Analyses of the complete genome sequence were carried out to identify genes implicated in the production of nEPS. Thus, the genomic biosynthesis pathway and the export mechanism of nEPS were proposed. Analyses of irradiation data showed that iEPSs acquired new functional groups, lower molecular weights, and gained significantly (p < 0.05) higher antioxidant and antitumor abilities compared with nEPS. These findings provide a basis for using iEPSs as novel pharmaceutical agents for human therapies.

11.
Arch Microbiol ; 203(10): 6231-6243, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34591145

RESUMO

The aims of this study were (i) to compare PCP removal (100 mg L-1) by two bacterial consortia B1 and B2 in sterile wastewater (STWW) and liquid mineral medium (MSM), (ii) PCP effect in biofilm formation and antimicrobial susceptibility. PCP removal was measured by high-performance liquid chromatography (HPLC) during 168 h at 30 °C. Biofilm formation was assessed with two approaches: Congo Red Agar and Microtiter-plate. Antimicrobial susceptibility was determined by the agar disc diffusion technique. The results showed that the PCP removal for consortium B1 and B2 after 168 h was 70 and 97.5% in STWW; 62.2 and 85.5% in MSM, respectively. In addition, PCP addition showed an increase in biofilm development especially for B2 consortium around 3.5 nm in 100 mg L-1 PCP. PCP added in the Muller Hinton (MH) medium and Gentamicin disc showed a clear increase in diameter of cell lysis around 2 to 4.5 cm.


Assuntos
Pentaclorofenol , Bactérias , Biodegradação Ambiental , Biotransformação , Águas Residuárias
12.
Arch Microbiol ; 203(8): 5141-5152, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34327555

RESUMO

This study aims to evaluate the effect of three surfactants on the removal of PCP (800 mg L-1) from Secondary Treated Wastewater (STWW) by Pseudomonas putida AJ 785569. The effect of surfactants [sodium lauryl sulfate (SDS) as anionic, Tween 80 (TW80) as non-anionic and cetyltrimethylammonium bromide (CTAB) as cationic] is tested about the three following aspects: (1) bacterial growth, (2) bacterial biofilm formation or development and (3) PCP rate removal. The results showed that strain P. putida AJ 785569 could adsorb around 30 mg L-1 and remove 600 mg L-1 of PCP within 168 h of incubation. The SDS developed the growth of bacteria and the removal of PCP. This PCP removal in mineral salt medium (MSM) is around 760 mg L-1 (95% degradation) higher than the ones registered with CTAB and TW80 with a value 506.75 (63% degradation) and 364.1 mg L-1 (45% degradation), respectively. The obtained results of chloride concentration showed an important relation with PCP removal during incubation with an important value. Monitoring the development of bacterial biofilm, in MSM medium added with PCP (100 mg L-1) by strain P. putida AJ 785569, showed a significant increase in the optical density value from 0.9 to 4 at λ = 595 nm, a modification of strain P. putida AJ 785569's morphotype, density and color colonies.


Assuntos
Pentaclorofenol , Pseudomonas putida , Biodegradação Ambiental , Tensoativos , Águas Residuárias
13.
Arch Microbiol ; 203(7): 4641-4651, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34173006

RESUMO

Pentachlorophenol (PCP) is a toxic compound, which is widely used as a wood preservative product and general biocide. It is persistent in the environment and has been classified as a persistent organic pollutant to be reclaimed in many countries. Bioremediation is an emerging approach to rehabilitating areas polluted by recalcitrant xenobiotics. In the present study, we evaluated the potential of three strains of Pseudomonas (P. putida S121, P. rhizophila S211, and P. fuscovagiceae S115) as bioremediation agents in depletion and detoxification of PCP in soil microcosms. PCP removal was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum PCP removal yield (85 ± 5%) were: 500 mg/kg PCP concentration, 108 UFC/g soil inoculum size of each strain and 55 days incubation period. The bacterial strains, P. putida, P. rhizophila, and P. fuscovagiceae, showed good capability to tolerate and degrade PCP so that they could be successfully used in synergistic effect to treat PCP polluted soils.


Assuntos
Pentaclorofenol , Pseudomonas , Microbiologia do Solo , Poluentes do Solo , Biodegradação Ambiental , Pentaclorofenol/metabolismo , Pseudomonas/metabolismo , Solo/química , Poluentes do Solo/metabolismo
14.
Water Environ Res ; 93(10): 2025-2033, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33864319

RESUMO

The aim of this study is to determine physiochemical and bacteriological properties of seawater and sediments from the coast of Tunisia during six successive months. The conductivity was measured using previously calibrated Hach Conductivity meter. Total suspended solid was determined using Whatman GF/C glass fiber filter (Sigma Aldrich), and the turbidity was assessed using a spectrophotometer (UV/Vis). The pH was measured using pH electrodes. Other physiochemical parameters were determined using Pastel UV multiparameter water analyzer (Secomam, aqualabo). Bacterial analysis was displayed by membrane filtration method, and isolates were identified to the species level by Api strips. Susceptibility to antibiotics was determined by disk diffusion methods. Total suspended solid, turbidity, adsorbable organic halogen, chemical oxygen demand, and biochemical oxygen demand were higher than accepted norms in Tunisia. Enterococcus faecalis was detected in all the sites indicating a human fecal contamination, and all the isolates were highly resistant to rifampicin, gentamicin, chloramphenicol, ampicillin, and azithromycin. The situation in Mahdia coast is alarming particularly with the isolation of multidrug resistance strains. It is recommended that the local government provide restrict policies for the treatment and the assessment of municipal wastewater before its discharge into sea. PRACTITIONER POINTS: Coastal Surveillance and Water Quality monitoring in the Rejiche Sea - Tunisia is crucial. Enterococcus faecalis was detected in sea water and sediment samples in the coast of Rejiche. Isolated strains were highly resistant to rifampicin, gentamicin, chloramphenicol, ampicillin and azithromycin.


Assuntos
Enterococcus , Qualidade da Água , Antibacterianos/farmacologia , Humanos , Tunísia , Água
15.
Environ Sci Pollut Res Int ; 28(30): 40908-40916, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33774792

RESUMO

Dermaseptins are peptides found in the skin secretions of Phyllomedusinae frogs. These peptides exert a lytic action on various microorganisms and have no considerable hemolytic effect except dermaseptin S4 (DS4) which exhibits a powerful cytotoxic effect. Therefore, we synthesized several analogs of DS4 in an attempt to find molecules with a weak hemolytic effect and significant bioactivities. In this study, we performed the synthesis of truncated peptides by introducing C-terminal and N-terminal amino acid deletions of the native sequence. All peptide analogs, in comparison with parental peptide, were tested firstly on human red blood cells to work out their cytotoxicity, secondly on the multidrug-resistant bacteria by trying to find MICs, and finally on colon cancer tumor cell line SW620 using the MTT test so as to investigate the anti-proliferative effect. Our results showed that, on the one hand, the N terminus of the native peptide was necessary for the antibacterial activity and the anti-proliferative effect of the peptide. On the other hand, the hemolytic activity was more notable in the sequences broken down on the C-terminal side.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Neoplasias do Colo , Sequência de Aminoácidos , Proteínas de Anfíbios , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular , Neoplasias do Colo/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana
16.
Environ Sci Pollut Res Int ; 28(12): 14530-14545, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33215279

RESUMO

Medicines and drugs consumption by all populations of the world can be expected to result in the contamination of the environment since 30-90% of residual drugs will be found into wastewaters. In this study, we investigate the degradation of acetaminophen, selected as a xenobiotic model molecule, via two separate procedures, the TiO2 impregnated on cellulosic paper photocatalysis, and specific bacterial biodegradation process. Results showed that for initial drug content of 400 mg/L and after 5 hours of processing, around 85% of paracetamol was photocatalytically degraded. The use of Pseudomonas putida E1.21 isolate allowed an abatement of around 92% after 32 h of processing. The acetaminophen toxicity conducted in vivo on laboratory mice showed a net decrease of the creatinine release and enzymes activities like ALP, ALT, AST, and LDH decreased significantly (p < 0.05) when mice were treated distinctly by acetaminophen treated with UV/TiO2 and the Pseudomonas putida E1.21 strain compared with the control experiments. CAT, MDA, and AchE serum level disruption measurement indicated a serious affection of the mice antioxidant system. These results were found to be in correlation with the ones of the histological analysis of the liver and kidney.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/toxicidade , Animais , Antioxidantes , Biodegradação Ambiental , Fígado , Camundongos , Águas Residuárias
17.
Arch Microbiol ; 202(10): 2607-2617, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32691102

RESUMO

Actinomycetales is an order of actinobacteria that have an important role in the decomposition of organic matter. Their abundance and distribution can reflect a good level of soil fertility as well as biological activity. In this research study, actinomycetal diversity in soil was investigated under various field treatments with biowastes. Initially, unvegetated agricultural soil plots of 4 m2 had been annually amended with increasing rates of municipal solid waste compost (MSWC at 40, 80 and 120 t ha-1 year-1) and farmyard manure (FM at 40 and 120 t ha-1 year-1) for eight consecutive years. Control consisted of unamended soil and all treatments were distributed in four randomized complete blocks. At the end of the experimental period, total DNA was extracted from fresh topsoil samples (0-20 cm) then nested PCR-DGGE sequencing method was applied to assess the long-term effect of treatments on the diversity of actinomycetes. Analytical outcomes revealed the presence of ten actinomycetal families with Streptomycetaceae, Pseudonocardiaceae and Nocardioidaceae being the most dominant regardless to changes in experimental conditions. Besides, the long-term accumulation of both biowastes in soil affected the diversity of actinomycetal communities in different ways including contribution, stimulation or inhibition. Interestingly, soil treated with MSWC at an equivalent rate of 40 t ha-1 year-1 was likely to provide optimal growth conditions for major identified genera because it showed the highest actinomycetal diversity as compared to the rest of the treatments.


Assuntos
Actinomycetales/classificação , Actinomycetales/genética , Agricultura/métodos , Biodiversidade , Perfil Genético , Microbiologia do Solo , Esterco
18.
3 Biotech ; 8(6): 263, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29805953

RESUMO

A total of 68 dimethoate and pentachlorophenol-tolerant rhizobacteria, isolated from a pesticide-contaminated agricultural soil, have been identified and typed by means of 16S-23S rRNA internal transcribed spacers analysis (ITS-PCR), 16S rRNA gene sequencing and by repetitive extragenic palindromic (BOX-PCR). The majority of bacterial isolates (84.31%) belonged to Proteobacteria (with a predominance of Gammaproteobacteria, 72.54%), while the remaining isolates were affiliated with Firmicutes (9.80%), Bacteroidetes (1.96%) and Actinobacteria (3.92%). The pesticide-tolerant bacterial isolates belonged to 11 genera, namely Pseudomonas, Bacillus, Acinetobacter, Flavobacterium, Comamonas, Achromobacter, Rhodococcus, Ochrobactrum, Aquamicrobium, Bordetella and Microbacterium. Within the well-represented genus Pseudomonas (n = 36), the most common species was Pseudomonas putida (n = 32). The efficacy of the selected strain, Pseudomonas putida S148, was further investigated for biodegradation of pentachlorophenol (PCP) in minimal medium, when used as a sole carbon and energy source. At an initial concentration of 100 mg/L, P. putida S148 degraded 91% of PCP after 7 days. GC-MS analyses revealed the formation of tetrachlorohydroquinone, tri- and di-chlorophenols as biodechlorination products in PCP remediation experiments. The toxicity estimation showed that 50% lethal concentration (LC50) and 50% growth inhibition concentration (IGC50) obtained values for the major identified compounds (2,3,4,6 tetrachlorophenol, 2,3,5,6 tetrachlorophenol and tetrachlorohydroquinone) were higher than those estimated for the PCP indicating that the metabolites are less toxic than the original compound for those specific organisms. S148 strain could be added to pesticide-contaminated agricultural soils as a bacterial inoculant for its potential to improve soil quality.

19.
Front Microbiol ; 9: 34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527191

RESUMO

A number of Pseudomonas strains function as inoculants for biocontrol, biofertilization, and phytostimulation, avoiding the use of pesticides and chemical fertilizers. Here, we present a new metabolically versatile plant growth-promoting rhizobacterium, Pseudomonas rhizophila S211, isolated from a pesticide contaminated artichoke field that shows biofertilization, biocontrol and bioremediation potentialities. The S211 genome was sequenced, annotated and key genomic elements related to plant growth promotion and biosurfactant (BS) synthesis were elucidated. S211 genome comprises 5,948,515 bp with 60.4% G+C content, 5306 coding genes and 215 RNA genes. The genome sequence analysis confirmed the presence of genes involved in plant-growth promoting and remediation activities such as the synthesis of ACC deaminase, putative dioxygenases, auxin, pyroverdin, exopolysaccharide levan and rhamnolipid BS. BS production by P. rhizophila S211 grown on olive mill wastewater based media was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum BS production yield (720.80 ± 55.90 mg/L) were: 0.5% (v/v) inoculum size, 15% (v/v) olive oil mill wastewater (OMWW) and 40°C incubation temperature at pH 6.0 for 8 days incubation period. Biochemical and structural characterization of S211 BS by chromatography and spectroscopy studies suggested the glycolipid nature of the BS. P. rhizophila rhamnolipid was stable over a wide range of temperature (40-90°C), pH (6-10), and salt concentration (up to 300 mM NaCl). Due to its low-cost production, emulsification activities and high performance in solubilization enhancement of chemical pesticides, the indigenous BS-producing PGPR S211 could be used as a promising agent for environmental bioremediation of pesticide-contaminated agricultural soils.

20.
Oncotarget ; 6(8): 6431-47, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25669983

RESUMO

Resistance to chemotherapy is a major limitation of cancer treatments with several molecular mechanisms involved, in particular altered local drug metabolism and detoxification process. The role of drug metabolism and clearance system has not been satisfactorily investigated in Multiple Myeloma (MM), a malignant plasma cell cancer for which a majority of patients escapes treatment. The expression of 350 genes encoding for uptake carriers, xenobiotic receptors, phase I and II Drug Metabolizing Enzymes (DMEs) and efflux transporters was interrogated in MM cells (MMCs) of newly-diagnosed patients in relation to their event free survival. MMCs of patients with a favourable outcome have an increased expression of genes coding for xenobiotic receptors (RXRα, LXR, CAR and FXR) and accordingly of their gene targets, influx transporters and phase I/II DMEs. On the contrary, MMCs of patients with unfavourable outcome displayed a global down regulation of genes coding for xenobiotic receptors and the downstream detoxification genes but had a high expression of genes coding for ARNT and Nrf2 pathways and ABC transporters. Altogether, these data suggests ARNT and Nrf2 pathways could be involved in MM primary resistance and that targeting RXRα, PXR, LXR and FXR through agonists could open new perspectives to alleviate or reverse MM drug resistance.


Assuntos
Antineoplásicos/farmacocinética , Proteínas de Transporte/metabolismo , Mieloma Múltiplo/metabolismo , Resistência a Múltiplos Medicamentos , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...