Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276410

RESUMO

Nowadays, 3D PLA-printed parts are widely used in many applications, essentially using the fused filament fabrication technique. While the influence of printing parameters on quasi-static mechanical characterization has been extensively considered within the literature, there are limited accounts of this effect on fatigue performance. The two main aims of this research are first to investigate the effects of the infill density percentage on the fatigue life of dog-bone samples under rotating bending cycling loads, and second to model the fatigue life using Wöhler and Basquin models. The experiments exhibit a high variability of results, especially for low cyclic loads. The S-N curves show that the number of cycles at failure increases with the increase in the infill density percentage and decreases with the increase in loads. Investigations allow the formulation of each constant model as a function of the infill density percentage. The new fatigue model formulations exhibit good agreement with the experimental data. As an outcome of this study, the fatigue model for 3D-printed parts may be expressed as a function of the infill density percentage using fewer tests in the future and for other polymers used in fused filament fabrication.

2.
J Orofac Orthop ; 82(2): 99-110, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33156353

RESUMO

PURPOSE: NiTi wires are considered as the most appropriate wires to be used during the initial phase of orthodontic treatment. This work presents a numerical method to simulate the coupling between the orthodontic appliance and bone remodeling, which are the two mechanisms responsible for the orthodontic tooth movement. METHODS: The superelastic behavior of a NiTi wire was integrated in a three-dimensional simulation model to reproduce the long-term bone remodeling coupled with tooth alignment using the finite element method. The orthodontic load was derived by deforming the superelastic wire in order to adopt itself to the original position of irregular teeth. Root form was extracted from cone beam tomography imaging files. RESULTS: As a result, the teeth were aligned while the wire was recovering its initial shape. The canine was intruded by 0.53 mm, while the neighboring teeth were extruded by 0.44 and 0.46 mm. When the wire was loaded, it generated a load of 4.6 N on the bracket bonded on the canine. This force was active during the first day of the treatment. Then, the force continued to decline until the end of the correction period. The decreasing load delivered from the wire affected the teeth displacements as observed in real situations. CONCLUSION: Despite the complexity of the presented numerical simulation, this procedure allowed the analysis of the orthodontic forces that were generated in the clinical experiments and of the biomechanical response of the periodontal support elements when using this kind of wire.


Assuntos
Braquetes Ortodônticos , Fios Ortodônticos , Remodelação Óssea , Ligas Dentárias , Aparelhos Ortodônticos , Titânio , Técnicas de Movimentação Dentária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...