Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 239: 124082, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36965566

RESUMO

This study concerns a scoping and literature review of nanocarbon and its composites with details on specific propositions, including nanocarbon history, nanocarbon types, and lignocellulose nanocarbon types, properties, applications, toxicity, regulation, and business model for commercialization. The review brings novelties, comprehensively expounding on laboratory studies and industrial applications of biomass or lignocellulose materials-derived nanocarbon and its composites. Since its first discovery in the form of Buckyball in 1985, nanocarbon has brought interest to scientists and industries for applications. From the previous studies, it is discovered that many types of nanocarbon are sourced from lignocellulose materials. With their excellent properties of nanomaterials, nanocarbon has been harnessed for such as reinforcing and filler agents for nanocomposites or direct use of individual nanocarbon for specific purposes. However, the toxicological properties of nanocarbon have delivered a level of concern in its use and application. In addition, with the radically growing increase in the use of nanocarbon, policies have been enacted in several countries that rule on the use of nanocarbon. The business model for the commercialization of lignocellulose-based nanocarbon was also proposed in this study. This study can showcase the importance of both individual nanocarbon and nanocarbon-based composites for industrial implementations by considering their synthesis, properties, application, country legislations/regulations, and business model. The studies also can be the major references for researchers to partner with industries and governments in investing in lignocellulose-sourced nanocarbon potential research, development, and policies.


Assuntos
Lignina , Nanocompostos
2.
Materials (Basel) ; 16(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36769933

RESUMO

Chitosan is a biopolymer with great potential as food packaging due to its ability to create a film without additives and its better mechanical and antibacterial qualities compared to other biopolymers. However, chitosan film still has limitations due to its high moisture sensitivity and limited flexibility. Incorporating ZnO nanoparticles (ZnO-NPs) and stearic acid (SA) into chitosan films was expected to improve tensile strength, water vapor barrier, and antibacterial capabilities. This study aims to find the optimal formula for biohybrid nanocomposite films composed of chitosan, ZnO-NPs, and SA. The full factorial design approach-4 × 2 with 3 replicates, i.e., two independent variables, namely %ZnO-NPs at 4 levels (0%, 0.5%, 1%, and 3%, w/w) and %SA at 2 levels (0% and 5%, w/w)-was utilized to optimize chitosan-based biohybrid nanocomposite films, with the primary interests being antibacterial activities, water vapor barrier, and tensile strength. The incorporation of ZnO-NPs into chitosan films could increase antibacterial activity, while SA decreased it. The addition of SA had a good effect only in decreasing water vapor transmission rate (WVTR) values but a detrimental effect on other film properties mentioned above. The incorporation of ZnO-NPs enhanced all functional packaging properties of interest. The suggested solution of the optimization study has been validated. As a result, the formula with the inclusion of 1% ZnO-NPs without SA is optimal for the fabrication of active antibacterial films with excellent multifunctional packaging capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...