Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 8(12): 2378-2391, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973866

RESUMO

Development of microbial communities is a complex multiscale phenomenon with wide-ranging biomedical and ecological implications. How biological and physical processes determine emergent spatial structures in microbial communities remains poorly understood due to a lack of simultaneous measurements of gene expression and cellular behaviour in space and time. Here we combined live-cell microscopy with a robotic arm for spatiotemporal sampling, which enabled us to simultaneously acquire phenotypic imaging data and spatiotemporal transcriptomes during Bacillus subtilis swarm development. Quantitative characterization of the spatiotemporal gene expression patterns revealed correlations with cellular and collective properties, and phenotypic subpopulations. By integrating these data with spatiotemporal metabolome measurements, we discovered a spatiotemporal cross-feeding mechanism fuelling swarm development: during their migration, earlier generations deposit metabolites which are consumed by later generations that swarm across the same location. These results highlight the importance of spatiotemporal effects during the emergence of phenotypic subpopulations and their interactions in bacterial communities.


Assuntos
Bacillus subtilis , Microscopia , Bacillus subtilis/metabolismo , Transcriptoma , Perfilação da Expressão Gênica
2.
Phys Rev Lett ; 130(25): 258402, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37418715

RESUMO

Spectral mode representations play an essential role in various areas of physics, from quantum mechanics to fluid turbulence, but they are not yet extensively used to characterize and describe the behavioral dynamics of living systems. Here, we show that mode-based linear models inferred from experimental live-imaging data can provide an accurate low-dimensional description of undulatory locomotion in worms, centipedes, robots, and snakes. By incorporating physical symmetries and known biological constraints into the dynamical model, we find that the shape dynamics are generically governed by Schrödinger equations in mode space. The eigenstates of the effective biophysical Hamiltonians and their adiabatic variations enable the efficient classification and differentiation of locomotion behaviors in natural, simulated, and robotic organisms using Grassmann distances and Berry phases. While our analysis focuses on a widely studied class of biophysical locomotion phenomena, the underlying approach generalizes to other physical or living systems that permit a mode representation subject to geometric shape constraints.


Assuntos
Robótica , Locomoção
3.
Proc Natl Acad Sci U S A ; 120(7): e2206994120, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36763535

RESUMO

Recent advances in high-resolution imaging techniques and particle-based simulation methods have enabled the precise microscopic characterization of collective dynamics in various biological and engineered active matter systems. In parallel, data-driven algorithms for learning interpretable continuum models have shown promising potential for the recovery of underlying partial differential equations (PDEs) from continuum simulation data. By contrast, learning macroscopic hydrodynamic equations for active matter directly from experiments or particle simulations remains a major challenge, especially when continuum models are not known a priori or analytic coarse graining fails, as often is the case for nondilute and heterogeneous systems. Here, we present a framework that leverages spectral basis representations and sparse regression algorithms to discover PDE models from microscopic simulation and experimental data, while incorporating the relevant physical symmetries. We illustrate the practical potential through a range of applications, from a chiral active particle model mimicking nonidentical swimming cells to recent microroller experiments and schooling fish. In all these cases, our scheme learns hydrodynamic equations that reproduce the self-organized collective dynamics observed in the simulations and experiments. This inference framework makes it possible to measure a large number of hydrodynamic parameters in parallel and directly from video data.

4.
Elife ; 102021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34964437

RESUMO

Embryogenesis is a multiscale process during which developmental symmetry breaking transitions give rise to complex multicellular organisms. Recent advances in high-resolution live-cell microscopy provide unprecedented insights into the collective cell dynamics at various stages of embryonic development. This rapid experimental progress poses the theoretical challenge of translating high-dimensional imaging data into predictive low-dimensional models that capture the essential ordering principles governing developmental cell migration in complex geometries. Here, we combine mode decomposition ideas that have proved successful in condensed matter physics and turbulence theory with recent advances in sparse dynamical systems inference to realize a computational framework for learning quantitative continuum models from single-cell imaging data. Considering pan-embryo cell migration during early gastrulation in zebrafish as a widely studied example, we show how cell trajectory data on a curved surface can be coarse-grained and compressed with suitable harmonic basis functions. The resulting low-dimensional representation of the collective cell dynamics enables a compact characterization of developmental symmetry breaking and the direct inference of an interpretable hydrodynamic model, which reveals similarities between pan-embryo cell migration and active Brownian particle dynamics on curved surfaces. Due to its generic conceptual foundation, we expect that mode-based model learning can help advance the quantitative biophysical understanding of a wide range of developmental structure formation processes.


Assuntos
Movimento Celular , Desenvolvimento Embrionário , Modelos Teóricos , Animais , Embrião de Mamíferos/fisiologia , Embrião não Mamífero/fisiologia , Gastrulação , Morfogênese , Análise Espaço-Temporal , Peixe-Zebra/embriologia
5.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417290

RESUMO

Braiding of topological structures in complex matter fields provides a robust framework for encoding and processing information, and it has been extensively studied in the context of topological quantum computation. In living systems, topological defects are crucial for the localization and organization of biochemical signaling waves, but their braiding dynamics remain unexplored. Here, we show that the spiral wave cores, which organize the Rho-GTP protein signaling dynamics and force generation on the membrane of starfish egg cells, undergo spontaneous braiding dynamics. Experimentally measured world line braiding exponents and topological entropy correlate with cellular activity and agree with predictions from a generic field theory. Our analysis further reveals the creation and annihilation of virtual quasi-particle excitations during defect scattering events, suggesting phenomenological parallels between quantum and living matter.


Assuntos
Algoritmos , Membrana Celular/metabolismo , Oócitos/metabolismo , Teoria Quântica , Estrelas-do-Mar/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Oócitos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...