Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(19): 13622-13645, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37729113

RESUMO

A number of novel pyrazole derivatives have been synthesized, and several of these compounds are potent antibacterial agents with minimum inhibitory concentrations as low as 0.5 µg/mL. Human cell lines were tolerant to these lead compounds, and they showed negligible hemolytic effects at high concentrations. These bactericidal compounds are very effective against bacterial growth in both planktonic and biofilm contexts. Various techniques were applied to show the inhibition of biofilm growth and eradication of preformed biofilms by lead compounds. Potent compounds are more effective against persisters than positive controls. In vivo studies revealed that lead compounds are effective in rescuing C. elegans from bacterial infections. Several methods were applied to determine the mode of action including membrane permeability assay and SEM micrograph studies. Furthermore, CRISPRi studies led to the determination of these compounds as fatty acid biosynthesis (FAB) inhibitors.

2.
Heterocycles ; 86(2)2012 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24385679

RESUMO

A novel one-pot sulfonylation/intramolecular thia-Michael protocol is reported for the synthesis of 1,5,2-dithiazepine 1,1-dioxides. Sulfonylation between cysteine ethyl ester/cysteamine and 2-chloroethanesulfonyl chloride, followed by in situ intramolecular thia-Michael addition, was achieved and afforded the titled 1,5,2-dithiazepine-1,1-dioxide scaffolds. Diversification was demonstrated for future library synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...