Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 4: 4683, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24732468

RESUMO

The plasma dispersion effect and free-carrier absorption are widely used to change refractive index and absorption coefficient in Si-based optical modulators. However, the weak free-carrier effects in Si cause low modulation efficiency, resulting in large device footprint and power consumption. Here, we theoretically and experimentally investigate the enhancement of the free-carrier effects by strain-induced mass modulation in silicon-germanium (SiGe). The application of compressive strain to SiGe reduces the conductivity effective mass of holes, resulting in the enhanced free-carrier effects. Thus, the strained SiGe-based optical modulator exhibits more than twice modulation efficiency as large as that of the Si modulator. To the best of our knowledge, this is the first demonstration of the enhanced free-carrier effects in strained SiGe at the near-infrared telecommunication wavelength. The strain-induced enhancement technology for the free-carrier effects is expected to boost modulation efficiency of the most Si-based optical modulators thanks to high complementary metal-oxide-semiconductor (CMOS) compatibility.

2.
Opt Express ; 20(26): B357-64, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23262873

RESUMO

Electrically-driven Mach-Zehnder interferometer type InGaAsP photonic-wire optical switches have been demonstrated using a III-V-on-insulator structure bonded on a thermally oxidized Si with an Al(2)O(3)/InP bonding interfacial layer which enables strong wafer bonding and low propagation loss. Lateral p-i-n junctions in the InGaAsP photonic-wire waveguides were formed by using ion implantation for changing refractive index in the InGaAsP waveguide through carrier injection. Optical switching with 10 dB extinction ratio was achieved with driving current of 200 µA which is approximately 10 times smaller than that of Si photonic-wire optical switch owing to larger free-carrier effect in InGaAsP than that in Si.

3.
Materials (Basel) ; 5(3): 404-414, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28817054

RESUMO

Interface-formation processes in atomic layer deposition (ALD) of Al2O3 on InGaAs surfaces were investigated using on-line Auger electron spectroscopy. Al2O3 ALD was carried out by repeating a cycle of Al(CH3)3 (trimethylaluminum, TMA) adsorption and oxidation by H2O. The first two ALD cycles increased the Al KLL signal, whereas they did not increase the O KLL signal. Al2O3 bulk-film growth started from the third cycle. These observations indicated that the Al2O3/InGaAs interface was formed by reduction of the surface oxides with TMA. In order to investigate the effect of surface-oxide reduction on metal-insulator-semiconductor (MIS) properties, capacitors and field-effect transistors (FETs) were fabricated by changing the TMA dosage during the interface formation stage. The frequency dispersion of the capacitance-voltage characteristics was reduced by employing a high TMA dosage. The high TMA dosage, however, induced fixed negative charges at the MIS interface and degraded channel mobility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...