Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(2): 1231-1241, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33404237

RESUMO

Technologies for removal of mercury from produced water and hydrocarbon phases are desired by oil and gas production facilities, oil refineries, and petrochemical plants. Herein, we synthesize and demonstrate the efficacy of an amphiphilic, thiol-abundant (11.8 wt % S, as thiol) polymer nanogel that can remove environmentally relevant mercury species from both produced water and the liquid hydrocarbon. The nanogel disperses in both aqueous and hydrocarbon phases. It has a high sorption affinity for dissolved Hg(II) complexes and Hg-dissolved organic matter complexes found in produced water and elemental (Hg0) and soluble Hg-alkyl thiol species found in hydrocarbons. X-ray absorption spectroscopy analysis indicates that the sorbed mercury is transformed to a surface-bound Hg(SR)2 species in both water and hydrocarbon regardless of its initial speciation. The nanogel had high affinity to native mercury species present in real produced water (>99.5% removal) and in natural gas condensate (>85% removal) samples, removing majority of the mercury species using only a 50 mg L-1 applied dose. This thiolated amphiphilic polymeric nanogel has significant potential to remove environmentally relevant mercury species from both water and hydrocarbon at low applied doses, outperforming reported sorbents like sulfur-impregnated activated carbons because of the mass of accessible thiol groups in the nanogel.


Assuntos
Mercúrio , Hidrocarbonetos , Nanogéis , Polímeros , Compostos de Sulfidrila , Água
2.
Ind Eng Chem Res ; 59(12): 5287-5295, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33208988

RESUMO

Pore functionalized membranes with appropriate ion exchange/chelate groups allow toxic metal sorption under convective flow conditions. This study explores the sorption capacity of ionic mercury in a polyvinylidene fluoride-poly(acrylic acid) (PVDFs-PAA) functionalized membrane immobilized with cysteamine (MEA). Two methods of MEA immobilization to the PVDF-PAA membrane have been assessed: (i) ion exchange (IE) and (ii) carbodiimide cross-linker chemistry using 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), known as EDC/NHS coupling. The ion exchange method demonstrates that cysteamine (MEA) can be immobilized effectively on PVDF-PAA membranes without covalent attachment. The effectiveness of the MEA immobilized membranes to remove ionic mercury from the water was evaluated by passing a dissolved mercury(II) nitrate solution through the membranes. The sorption capacity of mercury for MEA immobilized membrane prepared by the IE method is 1015 mg/g PAA. On the other hand, the sorption capacity of mercury for MEA immobilized membrane prepared by EDC/NHS chemistry is 2446 mg/g PAA, indicating that membrane functionalization by EDC/NHS coupling enhanced mercury sorption 2.4 times compared to the IE method. The efficiencies of Hg removal are 94.1 ± 1.1 and 99.1 ± 0.1% for the MEA immobilized membranes prepared by IE and EDC/NHS coupling methods, respectively. These results show potential applications of MEA immobilized PVDF-PAA membranes for industrial wastewater treatment specifically from energy and mining industries to remove mercury and other toxic metals.

3.
ACS Omega ; 5(35): 22255-22267, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923783

RESUMO

This study demonstrates a three-step process consisting of primary pre-filtration followed by ultrafiltration (UF) and adsorption with thiol-functionalized microfiltration membranes (thiol membranes) to effectively remove mercury sulfide nanoparticles (HgS NPs) and dissolved mercury (Hg2+) from wastewater. Thiol membranes were synthesized by incorporating either cysteine (Cys) or cysteamine (CysM) precursors onto polyacrylic acid (PAA)-functionalized polyvinylidene fluoride membranes. Carbodiimide chemistry was used to cross-link thiol (-SH) groups on membranes for metal adsorption. The thiol membranes and intermediates of the synthesis were tested for permeability and long-term mercury removal using synthetic waters and industrial wastewater spiked with HgS NPs and a Hg2+ salt. Results show that treatment of the spiked wastewater with a UF membrane removed HgS NPs to below the method detection level (<2 ppb) for up to 12.5 h of operation. Flux reductions that occurred during the experiment were reversible by washing with water, suggesting negligible permanent fouling. Dissolved Hg2+ species were removed to non-detection levels by passing the UF-treated wastewater through a CysM thiol membrane. The adsorption efficiency in this long-term study (>20 h) was approximately 97%. Addition of Ca2+ cations reduced the adsorption efficiencies to 82% for the CysM membrane and to 40% for the Cys membrane. The inferior performance of Cys membranes may be explained by the presence of a carboxyl (-COOH) functional group in Cys, which may interfere in the adsorption process in the presence of multiple cations because of multication absorption. CysM membranes may therefore be more effective for treatment of wastewater than Cys membranes. Focused ion beam characterization of a CysM membrane cross section demonstrates that the adsorption of heavy metals is not limited to the membrane surface but takes place across the entire pore length. Experimental results for adsorptions of selected heavy metals on thiol membranes over a wide range of operating conditions could be predicted with modeling. These results show promising potential industrial applications of thiol-functionalized membranes.

4.
J Memb Sci ; 6042020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35912317

RESUMO

The role of steric hindrance and charge interactions in governing ionic transport through reduced graphene oxide (rGO) and commercial (DOW-Filmtec NF270) membranes was elucidated by a comprehensive study of experimental and established mathematical analysis based on Nernst-Planck equation. A charge-dominated salt exclusion mechanism was observed for the rGO membranes, which exhibited retention from low (7%) to moderate (70%) extent depending on the nature of ions (5 mM). Swelling of GO (1.2 nm interlayer distance) in water beyond the hydrated diameter of ions was attributed as a primary cause for lowering steric hindrance effects. The influence of parameters affecting charge interactions, such as pH and ionic strength, on the extent of salt rejection was modelled. The potential impact of the membrane's charge density, GO loading and interlayer spacing on salt retention was quantified by performing sensitivity analyses. For a high TDS produced water sample, the rGO membranes partially retained divalent cations (Ca:13%) and exhibited high dissolved oil rejection. The membranes were found to be suitable for the treatment of high TDS water with the goal of selectively removing organic impurities, and thus minimizing the impact of osmotic pressure effect. Performance of the membranes was also investigated for retention of water remediation related organic anions, using perfluoro octanoic (PFOA) acid as a model compound. rGO membranes exhibited a charge-dominated exclusion mechanism for retention (90%) of PFOA (1 ppm).

5.
Water Res ; 157: 600-609, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31003075

RESUMO

Mercury (Hg) speciation can affect its removal efficiency by adsorbents. This study assessed the removal of dissolved inorganic Hg(II) species (Hg(II)*), ß-HgS nanoparticles (HgS NP), and Hg complexed with dissolved organic matter (Hg-DOM) by three sorbents: activated carbon (AC), sulfur-impregnated activated carbon (SAC), and organoclay (OC). The effect of ionic composition, solution ionic strength, and natural organic matter (NOM) concentration on the removal of each Hg species was also evaluated. The three adsorbents were all effective in removing Hg(II)*, Hg-DOM, and HgS NPs. Increasing ionic strength decreased the removal of Hg(II)* species due to the formation of ionic Hg species with lower affinity for the sorbents. Added NOM decreased the removal of Hg(II)* and HgS NPs by all sorbents with the OC sorbent being most susceptible to NOM fouling. On a surface area-normalized basis, the OC removed all types of Hg species better than the AC and SAC samples. Moreover, adsorbed Hg-DOM transformed to a ß-HgS phase on the OC, but not for AC and SAC. These studies indicate that both Hg speciation and the water quality parameters need to be considered when designing sorbent-based emission controls to meet Hg removal targets.


Assuntos
Mercúrio , Poluentes Químicos da Água , Carvão Vegetal , Enxofre , Água
6.
Chem Eng J ; 327: 573-583, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29398952

RESUMO

Oil industries generate large amounts of produced water containing organic contaminants, such as naphthenic acids (NA) and very high concentrations of inorganic salts. Recovery of potable water from produced water can be highly energy intensive is some cases due to its high salt concentration, and safe discharge is more suitable. Here, we explored catalytic properties of iron oxide (FexOy nanoparticles) functionalized membranes in oxidizing NA from water containing high concentrations of total dissolved solids (TDS) using persulfate as an oxidizing agent. Catalytic decomposition of persulfate by FexOy functionalized membranes followed pseudo-first order kinetics with an apparent activation energy of 18 Kcal/mol. FexOy functionalized membranes were capable of lowering the NA concentrations to less than discharge limits of 10 ppm at 40 °C. Oxidation state of iron during reaction was quantified. Membrane performance was investigated for extended period of time. A coupled process of advanced oxidation catalyzed by membrane and nanofiltration was also evaluated. Commercially available nanofiltration membranes were found capable of retaining NA from water containing high concentrations of dissolved salts. Commercial NF membranes, Dow NF270 (Dow), and NF8 (Nanostone) had NA rejection of 79% and 82%, respectively. Retentate for the nanofiltration was further treated with advanced oxidation catalyzed by FexOy functionalized membrane for removal of NA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...