Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 24(7): 2724-2733, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38585374

RESUMO

Gallium phosphide (GaP) is a III-V semiconductor with remarkable optoelectronic properties, and it has almost the same lattice constant as silicon (Si). However, to date, the monolithic and large-scale integration of GaP devices with silicon remains challenging. In this study, we present a nanoheteroepitaxy approach using gas-source molecular-beam epitaxy for selective growth of GaP islands on Si nanotips, which were fabricated using complementary metal-oxide semiconductor (CMOS) technology on a 200 mm n-type Si(001) wafer. Our results show that GaP islands with sizes on the order of hundreds of nanometers can be successfully grown on CMOS-compatible wafers. These islands exhibit a zinc-blende phase and possess optoelectronic properties similar to those of a high-quality epitaxial GaP layer. This result marks a notable advancement in the seamless integration of GaP-based devices with high scalability into Si nanotechnology and integrated optoelectronics.

2.
Nano Lett ; 23(9): 3708-3715, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37096913

RESUMO

Optically addressable solid-state defects are emerging as some of the most promising qubit platforms for quantum networks. Maximizing photon-defect interaction by nanophotonic cavity coupling is key to network efficiency. We demonstrate fabrication of gallium phosphide 1-D photonic crystal waveguide cavities on a silicon oxide carrier and subsequent integration with implanted silicon-vacancy (SiV) centers in diamond using a stamp-transfer technique. The stamping process avoids diamond etching and allows fine-tuning of the cavities prior to integration. After transfer to diamond, we measure cavity quality factors (Q) of up to 8900 and perform resonant excitation of single SiV centers coupled to these cavities. For a cavity with a Q of 4100, we observe a 3-fold lifetime reduction on-resonance, corresponding to a maximum potential cooperativity of C = 2. These results indicate promise for high photon-defect interaction in a platform which avoids fabrication of the quantum defect host crystal.

3.
Opt Express ; 31(2): 1516-1531, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785185

RESUMO

We demonstrate quasi-phase matched, triply-resonant sum frequency conversion in 10.6-µm-diameter integrated gallium phosphide ring resonators. A small-signal, waveguide-to-waveguide power conversion efficiency of 8 ± 1.1%/mW; is measured for conversion from telecom (1536 nm) and near infrared (1117 nm) to visible (647 nm) wavelengths with an absolute power conversion efficiency of 6.3 ± 0.6%; measured at saturation pump power. For the complementary difference frequency generation process, a single photon conversion efficiency of 7.2%/mW from visible to telecom is projected for resonators with optimized coupling. Efficient conversion from visible to telecom will facilitate long-distance transmission of spin-entangled photons from solid-state emitters such as the diamond NV center, allowing long-distance entanglement for quantum networks.

4.
Opt Express ; 30(5): 6921-6933, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299466

RESUMO

We demonstrate post-fabrication target-wavelength trimming with a gallium phosphide on a silicon nitride integrated photonic platform using controlled electron-beam exposure of hydrogen silsesquioxane cladding. A linear relationship between the electron-beam exposure dose and resonant wavelength red-shift enables deterministic, individual trimming of multiple devices on the same chip to within 30 pm of a single target wavelength. Second harmonic generation from telecom to near infrared at a target wavelength is shown in multiple devices with quality factors on the order of 104. Post-fabrication tuning is an essential tool for targeted wavelength applications including quantum frequency conversion.

5.
Nano Lett ; 18(2): 1175-1179, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29381364

RESUMO

Generating entangled graph states of qubits requires high entanglement rates with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon collection efficiency, however, typically at the cost of a reduced defect emission energy homogeneity. Here, we demonstrate that the reduction in defect homogeneity in an integrated device can be partially offset by electric field tuning. Using photonic device-coupled implanted nitrogen vacancy (NV) centers in a GaP-on-diamond platform, we demonstrate large field-dependent tuning ranges and partial stabilization of defect emission energies. These results address some of the challenges of chip-scale entanglement generation.

6.
Opt Express ; 26(26): 33687-33699, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650802

RESUMO

Second harmonic conversion from 1550 nm to 775 nm with an efficiency of 400% W-1 is demonstrated in a gallium phosphide (GaP) on oxide integrated photonic platform. The platform consists of doubly-resonant, phase-matched ring resonators with quality factors Q ∼ 104, low mode volumes V ∼ 30(λ/n)3, and high nonlinear mode overlaps. Measurements and simulations indicate that conversion efficiencies can be increased by a factor of 20 by improving the waveguide-cavity coupling to achieve critical coupling in current devices.

7.
Nano Lett ; 17(1): 200-205, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936763

RESUMO

Developing a nanoscale, integrable, and electrically pumped single mode light source is an essential step toward on-chip optical information technologies and sensors. Here, we demonstrate nanocavity enhanced electroluminescence in van der Waals heterostructures (vdWhs) at room temperature. The vertically assembled light-emitting device uses graphene/boron nitride as top and bottom tunneling contacts and monolayer WSe2 as an active light emitter. By integrating a photonic crystal cavity on top of the vdWh, we observe the electroluminescence is locally enhanced (>4 times) by the nanocavity. The emission at the cavity resonance is single mode and highly linearly polarized (84%) along the cavity mode. By applying voltage pulses, we demonstrate direct modulation of this single mode electroluminescence at a speed of ∼1 MHz, which is faster than most of the planar optoelectronics based on transition metal chalcogenides (TMDCs). Our work shows that cavity integrated vdWhs present a promising nanoscale optoelectronic platform.

8.
ACS Appl Mater Interfaces ; 8(40): 26948-26955, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27642767

RESUMO

The epitaxial integration of highly heterogeneous material systems with silicon (Si) is a central topic in (opto-)electronics owing to device applications. InP could open new avenues for the realization of novel devices such as high-mobility transistors in next-generation CMOS or efficient lasers in Si photonics circuitry. However, the InP/Si heteroepitaxy is highly challenging due to the lattice (∼8%), thermal expansion mismatch (∼84%), and the different lattice symmetries. Here, we demonstrate the growth of InP nanocrystals showing high structural quality and excellent optoelectronic properties on Si. Our CMOS-compatible innovative approach exploits the selective epitaxy of InP nanocrystals on Si nanometric seeds obtained by the opening of lattice-arranged Si nanotips embedded in a SiO2 matrix. A graphene/InP/Si-tip heterostructure was realized on obtained materials, revealing rectifying behavior and promising photodetection. This work presents a significant advance toward the monolithic integration of graphene/III-V based hybrid devices onto the mainstream Si technology platform.

9.
Opt Express ; 23(10): 12998-3004, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074552

RESUMO

We describe an upconversion infrared photodetector assisted by a gallium phosphide photonic crystal nanocavity directly coupled to a silicon photodiode. The strongly cavity-enhanced second harmonic signal radiating from the gallium phosphide membrane can thus be efficiently collected by the silicon photodiode, which promises a high photoresponsivity of the upconversion detector as 0.81 A/W with the coupled power of 1W. The integrated upconversion photodetector also functions as a compact autocorrelator with sub-ps resolution for measuring pulse width and chirp.

10.
Nature ; 520(7545): 69-72, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25778703

RESUMO

Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

11.
Appl Phys Lett ; 103(18): 181119, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24273329

RESUMO

We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS2) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS2 monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS2 emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of the MoS2 SE rate exceeding a factor of 70.

12.
Nano Lett ; 12(11): 5626-31, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23043452

RESUMO

We demonstrate a large enhancement in the interaction of light with graphene through coupling with localized modes in a photonic crystal nanocavity. Spectroscopic studies show that a single atomic layer of graphene reduces the cavity reflection by more than a factor of one hundred, while also sharply reducing the cavity quality factor. The strong interaction allows for cavity-enhanced Raman spectroscopy on subwavelength regions of a graphene sample. A coupled-mode theory model matches experimental observations and indicates significantly increased light absorption in the graphene layer. The coupled graphene-cavity system also enables precise measurements of graphene's complex refractive index.

13.
Nano Lett ; 10(10): 3922-6, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20825160

RESUMO

We describe and experimentally demonstrate a technique for deterministic, large coupling between a photonic crystal (PC) nanocavity and single photon emitters. The technique is based on in situ scanning of a PC cavity over a sample and allows the precise positioning of the cavity over a desired emitter with nanoscale resolution. The power of the technique is demonstrated by coupling the PC nanocavity to a single nitrogen vacancy (NV) center in diamond, an emitter system that provides optically accessible electron and nuclear spin qubits.

14.
Opt Express ; 18(12): 12176-84, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20588341

RESUMO

We demonstrate up to 30 nm tuning of gallium phosphide photonic crystal cavities resonances at aproximately 1.5 microm using a tapered optical fiber. The tuning is achieved through a combination of near-field perturbations and mechanical deformation of the membrane, both induced by the fiber probe. By exploiting this effect, we show fiber-coupled second harmonic generation with a tuning range of nearly 10 nm at the second harmonic wavelength of approximately 750 nm. By scaling cavity parameters, the signal could easily be shifted into other parts of the visible spectrum.

15.
Opt Express ; 17(25): 22609-15, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-20052186

RESUMO

We demonstrate second harmonic generation in photonic crystal nanocavities fabricated in the semiconductor gallium phosphide. We observe second harmonic radiation at 750 nm with input powers of only nanowatts coupled to the cavity and conversion effciency P(out)/P(2)(in,coupled)=430%/W. The large electronic band gap of GaP minimizes absorption loss, allowing effcient conversion. Our results are promising for integrated, low-power light sources and on-chip reduction of input power in other nonlinear processes.


Assuntos
Gálio/química , Lasers , Iluminação/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Fosfinas/química , Desenho Assistido por Computador , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...