Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 407: 131102, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019198

RESUMO

A novel bio-carrier, PVA/Fe/starch gel bead, was fabricated and developed to enhance the anaerobic treatment performance of synthetic azo dye-containing wastewater. PVA-gel beads with 5 % magnetite and 0.5 % starch were optimal for physical strength and treatment performance. A pair of 2 L-up-flow anaerobic sludge blankets (UASB), one with the bead (UB) and another without (U) as a controller, operated continuously at 30 °C and an HRT of 11-24 h for 302 days. UB showed better performance than U in most phases, especially with influent dye of 200 mg·L-1, suggesting a greater tolerance to dye toxicity of UB than U. Microbial analysis revealed that the PVA/Fe/starch gel beads successfully captured the dye degrader Clostridium. Diversity indices indicated that PVA/Fe/Starch gel beads effectively support microbial diversity and resilience under varying dye concentrations. Overall, these findings demonstrate the potential of PVA/Fe/Starch gel beads to improve the stability and efficiency of the dye treatment system.

2.
Environ Res ; 258: 119418, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897434

RESUMO

Highly colored azo dye-contaminated wastewater poses significant environmental threats and requires effective treatment before discharge. The anaerobic azo dye treatment method is a cost-effective and environmentally friendly solution, while its time-consuming and inefficient processes present substantial challenges for industrial scaling. Thus, the use of iron materials presents a promising alternative. Laboratory studies have demonstrated that systems coupled with iron materials enhance the decolorization efficiency and reduce the processing time. To fully realize the potential of iron materials for anaerobic azo dye treatment, a comprehensive synthesis and evaluation based on individual-related research studies, which have not been conducted to date, are necessary. This review provides, for the first time, an extensive and detailed overview of the utilization of iron materials for azo dye treatment, with a focus on decolorization. It assesses the treatment potential, analyzes the influencing factors and their impacts, and proposes metabolic pathways to enhance anaerobic dye treatment using iron materials. The physicochemical characteristics of iron materials are also discussed to elucidate the mechanisms behind the enhanced bioreduction of azo dyes. This study further addresses the current obstacles and outlines future prospects for industrial-scale application of iron-coupled treatment systems.

3.
Arch Microbiol ; 206(7): 317, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904779

RESUMO

Two myxobacterial strains (KH5-1T and NO1) were isolated from the activated sludge tanks treating municipal sewage wastewater in Japan. These strains were recognised as myxobacteria based on their phenotypic characteristics of swarming colonies and fruiting bodies. Phylogenetic analyses using the 16S rRNA gene revealed that strains KH5-1T and NO1 were affiliated with the genus Corallococcus, with the closest neighbours being Corallococcus exercitus AB043AT (99.77% and 99.84%, respectively). Genome comparisons using orthologous average nucleotide identity (orthoANI) and digital DNA-DNA hybridisation similarity (dDDH) with strains KH5-1T and NO1 and their phylogenetically close relatives in Corallococcus spp. were below the thresholds. The major cellular fatty acids of strains KH5-1T and NO1 were iso-C15:0 (31.9%, 30.0%), summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c) (20.2%, 17.7%), and iso-C17:0 (12.1%, 14.8%), and the major respiratory quinone was found to be menaquinone (MK)-8. Based on the phenotypic, chemotaxonomic, and phylogenetic evidence, strains KH5-1T and NO1 represent a new species in the genus Corallococcus, for which the proposed name is Corallococcus caeni sp. nov. The type strain is KH5-1T (= NCIMB 15510T = JCM 36609T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Myxococcales , Filogenia , RNA Ribossômico 16S , Esgotos , Esgotos/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Myxococcales/genética , Myxococcales/classificação , Myxococcales/isolamento & purificação , Japão , Hibridização de Ácido Nucleico , Análise de Sequência de DNA , Vitamina K 2/análise , Genoma Bacteriano , Águas Residuárias/microbiologia
4.
Water Res ; 258: 121762, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754297

RESUMO

In this study, we aimed to establish high-rate biological treatment of purified terephthalic acid (PTA) and dimethyl terephthalate (DMT) wastewater that minimizes the inhibitory effects of high concentration benzoate and acetate. To achieve this, we developed a novel bioreactor system and biostimulation strategy. An internal two-stage upflow anaerobic (ITUA) reactor was operated with (i) a packed bed containing green tuff medium underlying (ii) a compartment seeded with anaerobic granular sludge. Ethylene glycol was amended to stimulate syntrophic interactions. Continuous operation of the system for 1,026 days achieve an organic removal rate of 11.0 ± 0.6 kg COD/m3/d. The abundance of aromatic degraders significantly increased during operation. Thus, we successfully developed a high-rate treatment system to treat wastewater from the PTA/DMT manufacturing processes by activating syntrophs in an ITUA reactor.


Assuntos
Reatores Biológicos , Ácidos Ftálicos , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água , Esgotos/química , Biodegradação Ambiental
5.
Microbiol Resour Announc ; 13(2): e0110423, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38206025

RESUMO

Myxobacteria are known as prolific producers of secondary metabolites with a unique and wide spectrum of bioactivities. Here, we report draft genome sequences of KH5-1 and NO1, myxobacteria isolated from activated sludge, which consist of 9.89 and 9.86 Mb, both of which have G + C contents of 70.7%.

6.
ISME J ; 17(12): 2279-2289, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872273

RESUMO

The cycle of life and death and Earth's carbon cycle(s) are intimately linked, yet how bacterial cells, one of the largest pools of biomass on Earth, are recycled back into the carbon cycle remains enigmatic. In particular, no bacteria capable of scavenging dead cells in oxygen-depleted environments have been reported thus far. In this study, we discover the first anaerobes that scavenge dead cells and the two isolated strains use distinct strategies. Based on live-cell imaging, transmission electron microscopy, and hydrolytic enzyme assays, one strain (designated CYCD) relied on cell-to-cell contact and cell invagination for degrading dead food bacteria where as the other strain (MGCD) degraded dead food bacteria via excretion of lytic extracellular enzymes. Both strains could degrade dead cells of differing taxonomy (bacteria and archaea) and differing extents of cell damage, including those without artificially inflicted physical damage. In addition, both depended on symbiotic metabolic interactions for maximizing cell degradation, representing the first cultured syntrophic Bacteroidota. We collectively revealed multiple symbiotic bacterial decomposition routes of dead prokaryotic cells, providing novel insight into the last step of the carbon cycle.


Assuntos
Bactérias Anaeróbias , Bactérias , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Archaea , Meio Ambiente
7.
Water Res X ; 20: 100196, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37662426

RESUMO

Deciphering unclear microbial interactions is key to improving biological wastewater treatment processes. Microbial predation and parasitism in wastewater treatment ecosystems are unexplored survival strategies that have long been known and have recently attracted attention because these interspecies interactions may contribute to the reduction of excess sludge. Here, microbial community profiling of 600 activated sludge samples taken from six industrial and one municipal wastewater treatment processes (WWTPs) was conducted. To identify the shared lineages in the WWTPs, the shared microbial constituents were defined as the family level taxa that had ≥ 0.1% average relative abundance and detected in all processes. The microbial community analysis assigned 106 families as the shared microbial constituents in the WWTPs. Correlation analysis showed that 98 of the 106 shared families were significantly correlated with total carbon (TC) and/or total nitrogen (TN) concentrations, suggesting that they may contribute to wastewater remediation. Most possible predatory or parasitic bacteria belonging to the phyla Bdellovibrionota, Myxococcota, and Candidatus Patescibacteria were found to be the shared families and negatively correlated with TC/TN; thus, they were frequently present in the WWTPs and could be involved in the removal of carbon/nitrogen derived from cell components. Shotgun metagenome-resolved metabolic reconstructions indicated that gene homologs associated with predation or parasitism are conserved in the Bdellovibrionota, Myxococcota, and Ca. Patescibacteria genomes (e.g., host interaction (hit) locus, Tad-like secretion complexes, and type IV pilus assembly proteins). This study provides insights into the complex microbial interactions potentially linked to the reduction of excess sludge biomass in these processes.

8.
Chemosphere ; 339: 139626, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487980

RESUMO

This study evaluated the effects of acetone on the anaerobic degradation of synthetic latex wastewater, which was simulated from the wastewater of the deproteinized natural rubber production process, including latex, acetate, propionate, and acetone as the main carbon sources, at a batch scale in 5 cycles of a total of 60 days. Fe3O4 was applied to accelerate the treatment performance from cycle 3. Acetone was added in concentration ranges of 0%, 0.05%, 0.1%, 0.15%-included latex, and 0.15%-free latex (w/v). In the Fe3O4-free cycles, for latex-added vials, soluble chemical oxygen demand (sCOD) was removed at 43.20%, 43.20%, and 12.65%, corresponding to the input acetone concentrations varying from 0.05% to 0.15%, indicating the interference of acetone for COD reduction. After adding Fe3O4, all flasks reported a significant increase in COD removal efficiency, especially for acetone-only and latex-only vials, from 36.9% to 14.30%-42.95% and 83.20%, respectively. Other highlighted results of COD balance showed that Fe3O4 involvement improved the degradation process of acetate, propionate, acetone, and the other COD parts, including the intermediate products of latex reduction. Besides, during the whole batch process, the order of reduction priority of the carbon sources in the synthetic wastewater was acetate, propionate and acetone. We also found that the acetate concentration appeared to be strongly related to reducing other carbon sources in natural rubber wastewater. Microbial community analysis revealed that protein-degrading bacteria Bacteroidetes vadinHA17 and Proteinniphilum and methylotrophic methanogens might play key roles in treating simulated deproteinized-natural-rubber wastewater.


Assuntos
Látex , Águas Residuárias , Látex/metabolismo , Óxido Ferroso-Férrico/metabolismo , Anaerobiose , Acetona , Borracha , Propionatos , Reatores Biológicos/microbiologia , Carbono , Acetatos , Eliminação de Resíduos Líquidos/métodos
9.
Biofouling ; 39(4): 459-472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37341304

RESUMO

Microbial biofilm development on the membrane surface of bioreactors results in membrane flux decline (biofouling). Biofouling is one of the most severe problems limiting the use of these bioreactors. For detailed understanding of the biofouling, microbial community and dissolved organic matter analyses have been performed in recent decades. Although most previous studies have focused on mature biofilms at the end point of biofouling, understanding of the early stages is crucial to mitigate biofilm formation. Thus, recent studies have focused on the impact of early-stage biofilm development and indicated a clear difference in microbial communities between early-stage and mature biofilms. In addition, certain bacteria play a significant role in early-stage biofilms. The present mini-review systematically summarizes the foulants present during early-stage fouling, provides novel perspectives on fouling mechanisms, and discusses the neglected effect of planktonic bacteria.


Assuntos
Biofilmes , Incrustação Biológica , Esgotos/microbiologia , Bactérias , Reatores Biológicos/microbiologia , Membranas Artificiais
10.
Environ Technol ; 44(19): 2831-2842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35188442

RESUMO

An anaerobic baffled reactor (ABR) is one of the useful wastewater treatment technologies, but the knowledge about its treatment performance for actual wastewater with load fluctuation is limited. The organic removal performance of an ABR for treating supermarket wastewater was evaluated. The ABR, which consisted of eight columns, was examined under four hydraulic retention time (HRT) conditions of 19.4, 12.9, 8.0, and 4.4 h. As a result, the unfiltered chemical oxygen demand (COD) removal efficiency was 80 (±8) % at an HRT of 19.4 h. When the HRT was shortened to 12.9 h, the average unfiltered COD removal efficiency decreased to 58 (±15) %. However, it showed buffering effect against high load inflow in the first column, indicating that it is useful as a pretreatment system under this condition. At an HRT of 4.4 h, the unfiltered COD removal efficiency decreased to 9%, indicating the system failed. The results of the microbial community structure analysis showed that the detection frequency of acidogenic bacteria decreased in proportion to the extension of residence time in the reactor. These results indicate that the ABR is useful for the treatment of supermarket wastewater with load fluctuations as a main treatment system at a HRT of 19.4 h and as a pretreatment system at a HRT of 12.9 h.


Assuntos
Águas Residuárias , Purificação da Água , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Supermercados , Reatores Biológicos/microbiologia
11.
Chemosphere ; 309(Pt 1): 136557, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36185000

RESUMO

The main objective of this study was to investigate the cause of gel fouling in membrane bioreactors (MBRs) treating real sewage in terms of soluble microbial products (SMPs) and microbial aspects. Two anoxic/oxic-MBRs were operated as the control reactor (S1) and the sludge loading rate increased reactor (S2). The reactors were operated under low-temperature around 11 °C conditions. Membrane permeability substantially decreased in S2, and gel layer biofilm was formed on membrane surface. In contrast, the permeability of S1 gradually decreased and cake layer formed. When gel fouling occurred, the protein and polysaccharide of SMP in S2 were 47 and 23 mg L-1, which were significantly lower than those recorded in S1 accounted for 118 and 68 mg L-1, respectively. Furthermore, the total organic carbon concentration of SMPs was 24 mg L-1, which was lower than the influent in S2, accounted for 62 mg L-1. Finally, Campylobacteraceae which exists in sewage and uncultured OD1, dominated the gel layer biofilm in S2, unlike the cake layer biofilm in S1. These results indicated that the gel layer biofilm might be composed of influent substances, demonstrating the importance of influent decomposition in MBR for gel fouling mitigation.


Assuntos
Membranas Artificiais , Esgotos , Reatores Biológicos , Biofilmes , Carbono
12.
Artigo em Inglês | MEDLINE | ID: mdl-36097952

RESUMO

Conventional activated sludge (AS) systems are widely used to treat domestic sewage worldwide. However, the removal of nitrogen in the AS system is limited, and its concentration in the effluent exceeds the recommended values in the discharge standards. In this study, a pilot experiment was conducted to improve nitrogen removal during municipal sewage treatment by operating AS and anaerobic-aerobic (AO) systems under low dissolved oxygen (DO) conditions of less than 0.5 mg L-1 and by adding denitrifying granular sludge. The low DO operation of the AS and AO systems led to the sludge washout and increased the organic content and ammonia and nitrate concentration of the effluent. In contrast, the nitrate concentrations of the effluents produced by the AS and AO systems were 9.4 ± 3.6 and 8.4 ± 0.7 mg-N L-1, respectively, indicated that denitrifying granular sludge addition enhanced denitrification during sewage treatment. The total nitrogen (TN) removal efficiency increased by 13% and 9% for the AS and AO systems despite a decrease in the temperature of 6 °C for the water in the aeration tank. Thus, adding denitrifying granular sludge to the aeration tank is a simple and effective approach to improve organic and nitrogen removal during wastewater treatment.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Amônia , Anaerobiose , Reatores Biológicos , Desnitrificação , Nitratos , Nitrificação , Nitrogênio , Oxigênio , Águas Residuárias , Água
13.
Environ Microbiol ; 24(8): 3735-3750, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672869

RESUMO

Aerobic ammonia and nitrite oxidation reactions are fundamental biogeochemical reactions contributing to the global nitrogen cycle. Although aerobic nitrite oxidation yields 4.8-folds less Gibbs free energy (∆Gr ) than aerobic ammonia oxidation in the NH4 + -feeding marine recirculating trickling biofilter reactors operated in the present study, nitrite-oxidizing and not ammonia-oxidizing Nitrospira (sublineage IV) outnumbered ammonia-oxidizing Nitrosomonas (relative abundance; 53.8% and 7.59% respectively). CO2 assimilation efficiencies during ammonia or nitrite oxidation were 0.077 µmol-14 CO2 /µmol-NH3 and 0.053-0.054 µmol-14 CO2 /µmol-NO2 - respectively, and the difference between ammonia and nitrite oxidation was much smaller than the difference of ∆Gr . Free-energy efficiency of nitrite oxidation was higher than ammonia oxidation (31%-32% and 13% respectively), and high CO2 assimilation and free-energy efficiencies were a determinant for the dominance of Nitrospira over Nitrosomonas. Washout of Nitrospira and Nitrosomonas from the trickling biofilter reactors was also examined by quantitative PCR assay. Normalized copy numbers of Nitrosomonas amoA were 1.5- to 1.7-folds greater than Nitrospira nxrB and 16S rRNA gene in the reactor effluents. Nitrosomonas was more susceptible for washout than Nitrospira in the trickling biofilter reactors, which was another determinant for the dominance of Nitrospira in the trickling biofilter reactors.


Assuntos
Nitritos , Nitrosomonas , Amônia , Bactérias/genética , Dióxido de Carbono , Nitrosomonas/genética , Oxirredução , RNA Ribossômico 16S/genética
14.
Environ Technol ; 43(2): 275-285, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32552551

RESUMO

Partial water exchange is one of the most common conventional methods used to maintain water quality and aesthetic beauty in recirculating aquarium systems (RASs). However, this method uses substantial amount of water. The ozone-down-flow hanging sponge-up-flow sludge blanket (ozone-DHS-USB) system attempts to be a more responsible method for aquarium maintenance. It eliminates the necessity for water exchange in aquarium by maintaining nitrogen concentrations at a safe level and by reducing yellow substances. Also, the impact of O3 on the DHS-USB system was investigated. The system was assayed using an on-site freshwater aquarium influenced by ambient temperature ranging from 23°C to 34°C. During ozonation Phases 1 and 3, the colour of the water in the aquarium was successfully maintained below 10 colour units. The 16S rRNA gene analysis of microorganisms in the DHS revealed that constant application of O3 has caused a decrease in nitrite-oxidizing bacteria (NOB). Nevertheless, NH3 and NO2- were maintained within 0.1 mg N L-1, and NO3- was maintained at 14.6 ± 9.20 mg N L-1 throughout the study. Carps survived for 425 days without any water exchange performed. Our study supports that the ozone-DHS-USB system has a high potential towards creating low-maintenance aquaria.


Assuntos
Ozônio , Reatores Biológicos , Água Doce , RNA Ribossômico 16S , Esgotos
15.
Environ Technol ; 43(16): 2457-2466, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33563141

RESUMO

Down-flow hanging sponge (DHS) reactor that is sponge-based trickling filter was considered to be an alternative aerobic treatment system for low strength sewage treatment under tropical conditions. This study aims to determine the process performance of the DHS reactor combined with a pre-treatment sedimentation tank (SED) system installed at the municipality sewage treatment plant in Khon Kaen, Thailand over, 1,600 days. The DHS reactor was operated with three operational periods: low (0.2 kgBODm3 per day), high (0.5-1.3 kgBODm3 per day), and super rates (1.7-2.2. kgBODm3 per day). The results showed effective reductions in biochemical oxygen demand (BOD) and suspended solids by more than 74% and 78%, respectively, during the entire experimental period. Moreover, the final effluent met the Thailand discharge standard with an external short hydraulic retention time of 0.2 h. In addition, the combined system facilitates simultaneous nitrification and denitrification and effectively removed up to 43% of total nitrogen. The self-degradation of the organic compounds occurs owing to the retained sludge in the DHS reactor; this leads to undisputed clogging in sponge media. Therefore, the combined SED-DHS system could be an appropriate sewage treatment system for tropical conditions.


Assuntos
Reatores Biológicos , Esgotos , Análise da Demanda Biológica de Oxigênio , Nitrificação , Nitrogênio/análise , Esgotos/química , Tailândia , Eliminação de Resíduos Líquidos/métodos
16.
Chemosphere ; 279: 130475, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134399

RESUMO

This study was conducted to assess the potential of a sponges-submerged anaerobic baffled reactor (SS-ABR) for enhancing the processing performance of azo dye-contaminated wastewater. A lab-scale four-compartment SS-ABR, with a total volume of 10 L, was operated at 30 °C for 180 days. A total of 14 polyurethane sponges were added in each compartment to treat synthetic wastewater including a commercial azo dye Hellozol HSR Reactive Black. During the entire operation, in synthetic wastewater, starch was used as a sole carbon source, and the true color level was maintained at 1050 ± 98 Pt/Co. Meanwhile, the hydraulic retention time (HRT) and total COD (T-COD) in the influent were changed to evaluate the SS-ABR treatment performance. After the start-up phase, true color and T-COD removal efficiencies were recorded as 65 ± 3% and 83 ± 2%, 68 ± 5% and 81 ± 4%, and 70 ± 5% and 84 ± 2% for HRT and influent T-COD concentration of 18.6 h and 260 mg L-1, 14.6 h and 260 mg L-1, and 14.6 h and 460 mg L-1, respectively. The microbial community analysis showed that bacterial groups involved in dye degradation, such as Clostridium sp., and sulfate-reducing bacteria Desulfomonile sp. and Desulfovibrio sp. were detected prominently in the SS-ABR. Interestingly, the SS-ABR exhibited the dominance of both Geobacter sp. and Methanosarcina sp., and their occurrences in all columns were proportional to each other, revealing the formation of syntrophic relationships.


Assuntos
Corantes , Águas Residuárias , Anaerobiose , Bactérias Anaeróbias , Reatores Biológicos , Eliminação de Resíduos Líquidos
17.
Environ Technol ; : 1-10, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34080528

RESUMO

Tofu is widely processed in East and Southeast Asian countries. During the production, highly polluted wastewater is discharged. This wastewater is commonly treated using a high-rate anaerobic wastewater treatment process; however, several organic compounds and nitrogen remain in the anaerobic effluent. The aim of this study was to develop a combined upflow anaerobic sludge blanket (UASB) and downflow hanging sponge (DHS) biosystem that that serves as a post-treatment for an expanded granular sludge blanket reactor used for treating tofu-processing wastewater in Japan for 699 days. The UASB reactor played a role in treating of COD, with 58 ± 16% and 74 ± 20% of total COD and soluble COD removed anaerobically. Besides, methane was recovered from removed soluble COD were 63 ± 28% and 87 ± 64% at winter and summer. Meanwhile, the DHS reactor showed its potential in treatment of BOD and TSS. The final effluents were recorded as 67 ± 38 mg L-1, 50 ± 26 mg L-1, and 22 ± 16 mg L-1 of total COD, BOD and total suspended solids, respectively. This indicates that the proposed UASB-DHS system has proven its suitability as post-treatment system for anaerobically treated tofu-processing wastewater.

18.
Microbiol Resour Announc ; 10(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446590

RESUMO

We report the draft genome sequence of Cytophagales sp. strain WSM2-2, isolated from garden soil. A 5.5-Mb genome sequence comprising four contigs was successfully obtained using Illumina NovaSeq and MinION sequencers. This draft genome sequence will contribute to the genomic knowledge of the bacterial order Cytophagales.

19.
Appl Microbiol Biotechnol ; 105(4): 1721-1729, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33481065

RESUMO

Biofilm development on the membrane surface is one of the main reasons for membrane fouling in membrane bioreactors (MBRs) and it is a big problem for their stable operation. Precise information on the microbial community composition of the biofilm is needed for a better understanding of biofilm development. However, there have been limited investigations of the relationship between the biofilm formation process and the microbial community of activated sludge and biofilm in MBRs treating real sewage. In this study, relationships between the microbial community structure of biofilm and activated sludge at each biofilm formation stage were investigated and biofilm growth was elucidated by nondestructive observations. Two anoxic/oxic MBRs were operated and membrane fouling was induced. Permeability rapidly decreased in both reactors and live cell microcolonies were formed on dead cell conditioning film on the membrane surface. Principal component analysis based on 16S rRNA gene sequences showed that the biofilm microbial community changed significantly from middle stage to mature biofilm when compared with that of activated sludge. The abundance of specific bacteria, such as unclassified Neisseriaceae, increased in middle-stage biofilm and the diversity indexes of middle-stage biofilm were lower than those of mature biofilm and activated sludge. These results suggested that the presence of specific bacteria with colonization ability played a crucial role in biofilm formation. Strategies are needed to target membrane fouling mitigation during early- and middle-stage biofilm formation to reduce MBR membrane fouling. KEY POINTS: • Microbial community of mature biofilm was approached to that of activated sludge. • In the middle-stage biofilm, live cells colonized on a dead-cell-conditioning-film. • Microbial diversity was lower in live cell colonizing stage than in activated sludge.


Assuntos
Reatores Biológicos , Esgotos , Biofilmes , Membranas Artificiais , RNA Ribossômico 16S/genética , Eliminação de Resíduos Líquidos
20.
Environ Technol ; 42(19): 3036-3047, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31987004

RESUMO

Anaerobic ammonia oxidation to nitrogen gas using nitrite as the electron acceptor (anammox process) is considered a cost-effective solution for nitrogen removal after an anaerobic pre-treatment process. In this study, we conducted a laboratory-scale experiment to develop a single-stage partial nitritation-anammox process in a sponge-based trickling filter (STF) reactor, inoculated with anammox sludge, simulating the treatment of anaerobically pretreated concentrated domestic sewage without mechanical oxygen control. The influent ammonia concentration was 100 mg-N·L-1. The KLa of the STF reactor was higher than those observed for conventional activated sludge processes. The STF reactor performed at 89.8 ± 8.2% and 42.7 ± 16.9% ammonia and TN removal efficiency, respectively, with a nitrogen loading rate of 0.55 ± 0.20 kg-N·m-3·day-1 calculated based on sponge volume. Microbial community analysis of the STF-retained sludge indicated that both autotrophic and heterotrophic nitrogen removal occurred in the reactor.


Assuntos
Reatores Biológicos , Águas Residuárias , Processos Autotróficos , Desnitrificação , Nitrogênio , Oxirredução , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...