Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 28(3): 1790-803, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22181675

RESUMO

Water adsorption on kaolinite, illite, and montmorillonite clays was studied as a function of relative humidity (RH) at room temperature (298 K) using horizontal attenuated total reflectance (HATR) Fourier transform infrared (FTIR) spectroscopy equipped with a flow cell. The water content as a function of RH was modeled using the Brunauer, Emmett, and Teller (BET) and Freundlich adsorption isotherm models to provide complementary multilayer adsorption analysis of water uptake on the clays. A detailed analysis of model fit integrity is reported. From the BET fit to the experimental data, the water content on each of the three clays at monolayer (ML) water coverage was determined and found to agree with previously reported gravimetric data. However, BET analysis failed to adequately describe adsorption phenomena at RH values greater than 80%, 50%, and 70% RH for kaolinite, illite, and montmorillonite clays, respectively. The Freundlich adsorption model was found to fit the data well over the entire range of RH values studied and revealed two distinct water adsorption regimes. Data obtained from the Freundlich model showed that montmorillonite has the highest water adsorption strength and highest adsorption capacity at RH values greater than 19% (i.e., above ML water adsorption) relative to the kaolinite and illite clays. The difference in the observed water adsorption behavior between the three clays was attributed to different water uptake mechanisms based on a distribution of available adsorption sites. It is suggested that different properties drive water adsorption under different adsorption regimes resulting in the broad variability of water uptake mechanisms.

2.
J Environ Monit ; 10(8): 919-34, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18688461

RESUMO

It is clear that mineral dust particles can impact a number of global processes including the Earth's climate through direct and indirect climate forcing, the chemical composition of the atmosphere through heterogeneous reactions, and the biogeochemistry of the oceans through dust deposition. Thus, mineral dust aerosol links land, air, and oceans in unique ways unlike any other type of atmospheric aerosol. Quantitative knowledge of how mineral dust aerosol impacts the Earth's climate, the chemical balance of the atmosphere, and the biogeochemistry of the oceans will provide a better understanding of these links and connections and the overall impact on the Earth system. Advances in the applications of analytical laboratory techniques have been critical for providing valuable information regarding these global processes. In this mini review article, we discuss examples of current and emerging techniques used in laboratory studies of mineral dust chemistry and climate and potential future directions.


Assuntos
Aerossóis , Atmosfera , Poeira , Minerais , Planeta Terra , Monitoramento Ambiental
3.
Artigo em Inglês | MEDLINE | ID: mdl-20636087

RESUMO

Aerosols represent an important component of the Earth's atmosphere. Because aerosols are composed of solid and liquid particles of varying chemical complexity, size, and phase, large challenges exist in understanding how they impact climate, health, and the chemistry of the atmosphere. Only through the integration of field, laboratory, and modeling analysis can we begin to unravel the roles atmospheric aerosols play in these global processes. In this article, we provide a brief review of the current state of the science in the analysis of atmospheric aerosols and some important challenges that need to be overcome before they can become fully integrated. It is clear that only when these areas are effectively bridged can we fully understand the impact that atmospheric aerosols have on our environment and the Earth's system at the level of scientific certainty necessary to design and implement sound environmental policies.


Assuntos
Aerossóis , Poeira , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar , Atmosfera , Técnicas de Química Analítica , Gases , Oceanos e Mares
4.
J Phys Chem B ; 112(2): 612-20, 2008 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-18052146

RESUMO

Although critical to atmospheric modeling of stratospheric ozone depletion, selective heterogeneous nuclei that promote the formation of Type Ia polar stratospheric clouds (PSCs) are largely unknown. While mineral particles are known to be good ice nuclei, it is currently not clear whether they are also good nuclei for PSCs. In the present study, a high-vacuum chamber equipped with transmission Fourier transform infrared spectroscopy and a quadrupole mass spectrometer was used to study heterogeneous nucleation of nitric acid trihydrate (NAT) on two clay minerals-Na-montmorillonite and kaolinite-as analogs of atmospheric terrestrial and extraterrestrial minerals. The minerals are first coated with a 3:1 supercooled H2O/HNO3 solution prior to the observed nucleation of crystalline NAT. At 220 K, NAT formation was observed at low SNAT values of 12 and 7 on kaolinite and montmorillonite clays, respectively. These are the lowest SNAT values reported in the literature on any substrate. However, NAT nucleation exhibited significant temperature dependence. At lower temperatures, representative of typical polar stratospheric conditions, much higher supersaturations were required before nucleation was observed. Our results suggest that NAT nucleation on mineral particles, not previously treated with sulfuric acid, may not be an important nucleation platform for Type Ia PSCs under normal polar stratospheric conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...