Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 134(40): 16773-80, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22989205

RESUMO

Tyrosine-derived hydroperoxides are formed in peptides and proteins exposed to enzymatic or cellular sources of superoxide and oxidizing species as a result of the nearly diffusion-limited reaction between tyrosyl radical and superoxide. However, the structure of these products, which informs their reactivity in biology, has not been unequivocally established. We report here the complete characterization of the products formed in the addition of superoxide, generated from xanthine oxidase, to several peptide-derived tyrosyl radicals, formed from horseradish peroxidase. RP-HPLC, LC-MS, and NMR experiments indicate that the primary stable products of superoxide addition to tyrosyl radical are para-hydroperoxide derivatives (para relative to the position of the OH in tyrosine) that can be reduced to the corresponding para-alcohol. In the case of glycyl-tyrosine, a stable 3-(1-hydroperoxy-4-oxocyclohexa-2,5-dien-1-yl)-L-alanine was formed. In tyrosyl-glycine and Leu-enkephalin, which have N-terminal tyrosines, bicyclic indolic para-hydroperoxide derivatives were formed ((2S,3aR,7aR)-3a-hydroperoxy-6-oxo-2,3,3a,6,7,7a-hexahydro-1H-indole-2-carboxylic acid) by the conjugate addition of the free amine to the cyclohexadienone. It was also found that significant amounts of the para-OH derivative were generated from the hydroxyl radical, formed on exposure of tyrosine-containing peptides to Fenton conditions. The para-OOH and para-OH derivatives are much more reactive than other tyrosine oxidation products and may play important roles in physiology and disease.


Assuntos
Armoracia/enzimologia , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/metabolismo , Superóxidos/metabolismo , Tirosina/análogos & derivados , Xantina Oxidase/metabolismo , Animais , Bovinos , Encefalina Leucina/química , Encefalina Leucina/metabolismo , Peróxido de Hidrogênio/química , Modelos Moleculares , Oxirredução , Peptídeos/química , Peptídeos/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/química , Tirosina/metabolismo
2.
J Am Chem Soc ; 132(49): 17490-500, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21090613

RESUMO

Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.


Assuntos
Peróxidos Lipídicos/química , Peróxidos/química , Tirosina/análogos & derivados , Cromatografia Líquida de Alta Pressão , Ciclização , Reação de Cicloadição , Radicais Livres/química , Ácidos Linoleicos/química , Espectrometria de Massas , Oxirredução , Fosfatidilcolinas/química , Prata/química , Tirosina/química
3.
Chembiochem ; 9(15): 2433-42, 2008 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-18803208

RESUMO

Glycans cover the surface of all mammalian cells. Several toxins and pathogens use these glycans to bind and infect the cell. Using a versatile modular synthetic strategy, we have developed biotinylated bi- and tetraantennary glycoconjugates to capture and detect E. coli and compared the capturing ability of these molecules to commercial polyclonal antibodies. Magnetic beads were coated with biotinylated glycoconjugate or antibody, and these beads were used to capture, isolate, and quantify bacterial recovery by using a luminescence assay. The glycoconjugate-coated magnetic beads outperformed antibody-coated magnetic beads in sensitivity and selectivity when compared under identical experimental conditions. Glycoconjugates could capture Escherichia coli from stagnant water, and the ability of a panel of glycoconjugates to capture a selection of pathogenic bacteria was also evaluated. To the best of our knowledge, this study represents the first comprehensive study that compares synthetic glycoconjugates and antibodies for E. coli detection. The glycoconjugates are also very stable and inexpensive. The results presented here are expected to lead to an increased interest in developing glycoconjugate-based high affinity reagents for diagnostics.


Assuntos
Biotina/química , Carboidratos/análise , Carboidratos/química , Escherichia coli/química , Escherichia coli/isolamento & purificação , Anticorpos/imunologia , Biotinilação , Carboidratos/síntese química , Escherichia coli/ultraestrutura , Magnetismo , Microscopia Eletrônica de Varredura , Estrutura Molecular , Especificidade por Substrato
5.
Biochem Biophys Res Commun ; 298(2): 257-61, 2002 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-12387825

RESUMO

Until recently, the only selenium containing amino acid which could be used to completely substitute for a wild type amino acid was selenomethionine (SeMet). In the last decade the preparation of SeMet containing proteins has proved to be valuable tools in the determination of three-dimensional structure by multiwavelength anomalous diffraction (MAD) techniques. The potential utility of a selenium containing tryptophan analog, beta-seleno[3,2-b]pyrrolyl-L-alanine ([4,5]selenatryptophan), has recently been demonstrated in the literature. This finding shows promise for the bioincorporation of its positional isomer, beta-selenolo[2,3-b]pyrrolyl-L-alanine ([6,7]selenatryptophan), thereby adding to the essential arsenal of selenium-containing amino acids for use in the characterization of proteins. The synthesis of [6,7]selenatryptophan by enzymatic biotransformation with tryptophan synthase from selenolo[2,3-b]pyrrole was carried out as well as its characterization by NMR spectroscopy and thin layer chromatography. Selenatryptophyl dihydrofolate reductase ([6,7]SeTrp-DHFR) was then synthesized in vivo, purified, and found to exhibit no perturbations to enzymatic activity.


Assuntos
Alanina/análise , Alanina/biossíntese , Compostos Organosselênicos/análise , Tetra-Hidrofolato Desidrogenase/química , Alanina/análogos & derivados , Alanina/química , Cromatografia em Camada Fina , Modelos Químicos , Compostos Organosselênicos/química , Triptofano Sintase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...