Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 81(11): 2410-2418, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30351923

RESUMO

The roots of Salvia miltiorrhiza ("Danshen") have been used in Chinese herbal medicine for centuries for a host of different conditions. While the exact nature of the active components of this material are unknown, large amounts of tanshinones are present in extracts derived from these samples. Recently, the tanshinones have been demonstrated to be potent human carboxylesterase (CE) inhibitors, with the ability to modulate the biological activity of esterified drugs. During the course of these studies, we also identified more active, irreversible inhibitors of these enzymes. We have purified, identified, and synthesized these molecules and confirmed them to be the anhydride derivatives of the tanshinones. These compounds are exceptionally potent inhibitors ( Ki < 1 nM) and can inactivate human CEs both in vitro and in cell culture systems and can modulate the metabolism of the esterified drug oseltamivir. Therefore, the coadministration of Danshen extracts with drugs that contain the ester chemotype should be minimized since, not only is transient inhibition of CEs observed with the tanshinones, but also prolonged irreversible inhibition arises via interaction with the anhydrides.


Assuntos
Abietanos/farmacologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores Enzimáticos/isolamento & purificação , Salvia miltiorrhiza/química , Abietanos/química , Abietanos/isolamento & purificação , Animais , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Estrutura Molecular , Oseltamivir/antagonistas & inibidores , Spodoptera
2.
Cancer Chemother Pharmacol ; 82(2): 251-263, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29855693

RESUMO

PURPOSE: The anaplastic lymphoma kinase (ALK) has been demonstrated to be a valid clinical target in diseases such as anaplastic large cell lymphoma and non-small cell lung cancer. Recent studies have indicated that ALK is overexpressed in pediatric rhabdomyosarcoma (RMS) and hence we hypothesized that this kinase may be a suitable candidate for therapeutic intervention in this tumor. METHODS: We evaluated the expression of ALK in a panel of pediatric RMS cell lines and patient-derived xenografts (PDX), and sensitivity to ALK inhibitors was assessed both in vitro and in vivo. RESULTS: Essentially, all RMS lines were sensitive to crizotinib, NVP-TAE684 or LDK-378 in vitro, and molecular analyses demonstrated inhibition of RMS cell proliferation following siRNA-mediated reduction of ALK expression. However, in vivo PDX studies using ALK kinase inhibitors demonstrated no antitumor activity when used as single agents or when combined with standard of care therapy (vincristine, actinomycin D and cyclophosphamide). More alarmingly, however, crizotinib actually accelerated the growth of these tumors in vivo. CONCLUSIONS: While ALK appears to be a relevant target in RMS in vitro, targeting this kinase in vivo yields no therapeutic efficacy, warranting extreme caution when considering the use of these agents in pediatric RMS patients.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/biossíntese , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/enzimologia , Quinase do Linfoma Anaplásico/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Crizotinibe/administração & dosagem , Crizotinibe/farmacologia , Ciclofosfamida/administração & dosagem , Dactinomicina/administração & dosagem , Interações Medicamentosas , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/biossíntese , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-met/biossíntese , Proteínas Proto-Oncogênicas c-met/genética , Pirimidinas/farmacologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Rabdomiossarcoma/genética , Transfecção , Vincristina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Eur J Med Chem ; 149: 79-89, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29499489

RESUMO

Recently, a series of selective human carboxylesterase inhibitors have been identified based upon the tanshinones, with biologically active molecules containing a 1,2-dione group as part of a naphthoquinone core. Unfortunately, the synthesis of such compounds is complex. Here we describe a novel method for the generation of 1,2-dione containing diterpenoids using a unified approach, by which boronic acids are joined to vinyl bromo-cyclohexene derivatives via Suzuki coupling, followed by electrocyclization and oxidation to the o-phenanthroquinones. This has allowed the construction of a panel of miltirone analogues containing an array of substituents (methyl, isopropyl, fluorine, methoxy) which have been used to develop preliminary SAR with the two human carboxylesterase isoforms. As a consequence, we have synthesized highly potent inhibitors of these enzymes (Ki < 15 nM), that maintain the core tanshinone scaffold. Hence, we have developed a facile and reproducible method for the synthesis of abietane analogues that have resulted in a panel of miltirone derivatives that will be useful tool compounds to assess carboxylesterase biology.


Assuntos
Abietanos/síntese química , Carboxilesterase/antagonistas & inibidores , Técnicas de Química Sintética/métodos , Fenantrenos/química , Abietanos/química , Inibidores Enzimáticos/síntese química , Humanos , Métodos , Naftoquinonas , Relação Estrutura-Atividade
4.
J Med Chem ; 60(4): 1568-1579, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112927

RESUMO

Carboxylesterases (CEs) are ubiquitous enzymes that are responsible for the metabolism of xenobiotics, including drugs such as irinotecan and oseltamivir. Inhibition of CEs significantly modulates the efficacy of such agents. We report here that ß-lapachone is a potent, reversible CE inhibitor with Ki values in the nanomolar range. A series of amino and phenoxy analogues have been synthesized, and although the former are very poor inhibitors, the latter compounds are highly effective in modulating CE activity. Our data demonstrate that tautomerism of the amino derivatives to the imino forms likely accounts for their loss in biological activity. A series of N-methylated amino derivatives, which are unable to undergo such tautomerism, were equal in potency to the phenoxy analogues and demonstrated selectivity for the liver enzyme hCE1. These specific inhibitors, which are active in cell culture models, will be exceptionally useful reagents for reaction profiling of esterified drugs in complex biological samples.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Naftoquinonas/química , Naftoquinonas/farmacologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Linhagem Celular , Humanos , Hidrólise/efeitos dos fármacos , Irinotecano , Fígado/enzimologia , Simulação de Acoplamento Molecular , Oseltamivir/farmacologia
5.
Br J Pharmacol ; 173(19): 2811-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27423046

RESUMO

Carboxylesterases (CEs) are ubiquitous enzymes responsible for the detoxification of ester-containing xenobiotics. This hydrolysis reaction results in the formation of the corresponding carboxylic acid and alcohol. Due to their highly plastic active site, CEs can hydrolyze structurally very distinct and complex molecules. Because ester groups significantly increase the water solubility of compounds, they are frequently used in the pharmaceutical industry to make relatively insoluble compounds more bioavailable. By default, this results in CEs playing a major role in the distribution and metabolism of these esterified drugs. However, this can be exploited to selectively improve compound hydrolysis, and using specific in vivo targeting techniques can be employed to generate enhanced drug activity. Here, we seek to detail the human CEs involved in esterified molecule hydrolysis, compare and contrast these with CEs present in small mammals and describe novel methods to improve drug therapy by specific delivery of CEs to cells in vivo. Finally, we will discuss the development of such approaches for their potential application towards malignant disease.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Metástase Neoplásica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Animais , Hidrolases de Éster Carboxílico/metabolismo , Inibidores Enzimáticos/química , Humanos , Hidrólise , Metástase Neoplásica/patologia , Neoplasias/metabolismo , Neoplasias/patologia
6.
Chem Biol Interact ; 259(Pt B): 327-331, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26892220

RESUMO

Carboxylesterases (CE) are members of the esterase family of enzymes, and as their name suggests, they are responsible for the hydrolysis of carboxylesters into the corresponding alcohol and carboxylic acid. To date, no endogenous CE substrates have been identified and as such, these proteins are thought to act as a mechanism to detoxify ester-containing xenobiotics. As a consequence, they are expressed in tissues that might be exposed to such agents (lung and gut epithelia, liver, kidney, etc.). CEs demonstrate very broad substrate specificities and can hydrolyze compounds as diverse as cocaine, oseltamivir (Tamiflu), permethrin and irinotecan. In addition, these enzymes are irreversibly inhibited by organophosphates such as Sarin and Tabun. In this overview, we will compare and contrast the two human enzymes that have been characterized, and evaluate the biology of the interaction of these proteins with organophosphates (principally nerve agents).


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Animais , Hidrolases de Éster Carboxílico/química , Humanos , Inativação Metabólica , Modelos Moleculares , Organofosfatos/metabolismo , Especificidade por Substrato
7.
Cell Rep ; 9(3): 829-41, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25437539

RESUMO

Ewing sarcoma (EWS) is a tumor of the bone and soft tissue that primarily affects adolescents and young adults. With current therapies, 70% of patients with localized disease survive, but patients with metastatic or recurrent disease have a poor outcome. We found that EWS cell lines are defective in DNA break repair and are sensitive to PARP inhibitors (PARPis). PARPi-induced cytotoxicity in EWS cells was 10- to 1,000-fold higher after administration of the DNA-damaging agents irinotecan or temozolomide. We developed an orthotopic EWS mouse model and performed pharmacokinetic and pharmacodynamic studies using three different PARPis that are in clinical development for pediatric cancer. Irinotecan administered on a low-dose, protracted schedule previously optimized for pediatric patients was an effective DNA-damaging agent when combined with PARPis; it was also better tolerated than combinations with temozolomide. Combining PARPis with irinotecan and temozolomide gave complete and durable responses in more than 80% of the mice.


Assuntos
Reparo do DNA , Terapia de Alvo Molecular , Sarcoma de Ewing/patologia , Animais , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Irinotecano , Camundongos Nus , Ftalazinas/farmacocinética , Ftalazinas/farmacologia , Piperazinas/farmacocinética , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/metabolismo , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Nat Prod ; 76(1): 36-44, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23286284

RESUMO

The roots of Salvia miltiorrhiza ("Danshen") are used in traditional Chinese medicine for the treatment of numerous ailments including cardiovascular disease, hypertension, and ischemic stroke. Extracts of S. miltiorrhiza roots in the formulation "Compound Danshen Dripping Pill" are undergoing clinical trials in the United States. To date, the active components of this material have not been conclusively identified. We have determined that S. miltiorrhiza roots contain potent human carboxylesterase (CE) inhibitors, due to the presence of tanshinones. K(i) values in the nM range were determined for inhibition of both the liver and intestinal CEs. As CEs hydrolyze clinically used drugs, the ability of tanshinones and S. miltiorrhiza root extracts to modulate the metabolism of the anticancer prodrug irinotecan (CPT-11) was assessed. Our results indicate that marked inhibition of human CEs occurs following incubation with both pure compounds and crude material and that drug hydrolysis is significantly reduced. Consequently, a reduction in the cytotoxicity of irinotecan is observed following dosing with either purified tanshinones or S. miltiorrhiza root extracts. It is concluded that remedies containing tanshinones should be avoided when individuals are taking esterified agents and that patients should be warned of the potential drug-drug interaction that may occur with this material.


Assuntos
Abietanos/isolamento & purificação , Abietanos/farmacologia , Camptotecina/análogos & derivados , Carboxilesterase/antagonistas & inibidores , Medicamentos de Ervas Chinesas/farmacologia , Fenantrolinas/farmacologia , Salvia miltiorrhiza/química , Abietanos/química , Abietanos/farmacocinética , Algoritmos , Camptotecina/química , Camptotecina/farmacologia , Ensaios Clínicos Fase I como Assunto , Interações Ervas-Drogas , Humanos , Irinotecano , Medicina Tradicional Chinesa , Estrutura Molecular , Raízes de Plantas/química
9.
Chem Biol Interact ; 203(1): 226-30, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23123248

RESUMO

Carboxylesterases (CEs) are ubiquitously expressed proteins that are responsible for the detoxification of xenobiotics. They tend to be expressed in tissues likely to be exposed to such agents (e.g., lung and gut epithelia, liver) and can hydrolyze numerous agents, including many clinically used drugs. Due to the considerable structural similarity between cholinesterases (ChE) and CEs, we have assessed the ability of a series of ChE inhibitors to modulate the activity of the human liver (hCE1) and the human intestinal CE (hiCE) isoforms. We observed inhibition of hCE1 and hiCE by carbamate-containing small molecules, including those used for the treatment of Alzheimer's disease. For example, rivastigmine resulted in greater than 95% inhibition of hiCE that was irreversible under the conditions used. Hence, the administration of esterified drugs, in combination with these carbamates, may inadvertently result in decreased hydrolysis of the former, thereby limiting their efficacy. Therefore drug:drug interactions should be carefully evaluated in individuals receiving ChE inhibitors.


Assuntos
Carboxilesterase/antagonistas & inibidores , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores da Colinesterase/farmacologia , Carboxilesterase/química , Carboxilesterase/genética , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Interações Medicamentosas , Humanos , Intestinos/enzimologia , Cinética , Fígado/enzimologia , Modelos Moleculares , Fenilcarbamatos/farmacologia , Fisostigmina/análogos & derivados , Fisostigmina/farmacologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rivastigmina
10.
Expert Opin Ther Pat ; 21(8): 1159-71, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21609191

RESUMO

INTRODUCTION: Carboxylesterases play major roles in the hydrolysis of numerous therapeutically active compounds. This is, in part, due to the prevalence of the ester moiety in these small molecules. However, the impact these enzymes may play on drug stability and pharmacokinetics is rarely considered prior to molecule development. Therefore, the application of selective inhibitors of this class of proteins may have utility in modulating the metabolism, distribution and toxicity of agents that are subjected to enzyme hydrolysis. AREAS COVERED: This review details the development of all such compounds dating back to 1986, but principally focuses on the very recent identification of selective human carboxylesterases inhibitors. EXPERT OPINION: The implementation of carboxylesterase inhibitors may significantly revolutionize drug discovery. Such molecules may allow for improved efficacy of compounds inactivated by this class of enzymes and/or reduce the toxicity of agents that are activated by these proteins. Furthermore, since lack of carboxylesterase activity appears to have no obvious biological consequence, these compounds could be applied in combination with virtually any esterified drug. Therefore, inhibitors of these proteins may have utility in altering drug hydrolysis and distribution in vivo. The characteristics, chemical and biological properties and potential uses of such agents are discussed here.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Animais , Hidrolases de Éster Carboxílico/metabolismo , Interações Medicamentosas , Estabilidade de Medicamentos , Inibidores Enzimáticos/química , Humanos , Hidrólise , Farmacocinética , Relação Estrutura-Atividade
11.
Biochem Pharmacol ; 81(1): 24-31, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20833148

RESUMO

The activation of the anticancer prodrug CPT-11, to its active metabolite SN-38, is primarily mediated by carboxylesterases (CE). In humans, three CEs have been identified, of which human liver CE (hCE1; CES1) and human intestinal CE (hiCE; CES2) demonstrate significant ability to hydrolyze the drug. However, while the kinetic parameters of CPT-11 hydrolysis have been measured, the actual contribution of each enzyme to activate the drug in biological samples has not been addressed. Hence, we have used a combination of specific CE inhibition and conventional chromatographic techniques to determine the amounts, and hydrolytic activity, of CEs present within human liver, kidney, intestinal and lung specimens. These studies confirm that hiCE demonstrates the most efficient kinetic parameters for CPT-11 activation, however, due to the high levels of hCE1 that are expressed in liver, the latter enzyme can contribute up to 50% of the total of drug hydrolysis in this tissue. Conversely, in human duodenum, jejunum, ileum and kidney, where hCE1 expression is very low, greater than 99% of the conversion of CPT-11 to SN-38 was mediated by hiCE. Furthermore, analysis of lung microsomal extracts indicated that CPT-11 activation was more proficient in samples obtained from smokers. Overall, our studies demonstrate that hCE1 plays a significant role in CPT-11 hydrolysis even though it is up to 100-fold less efficient at drug activation than hiCE, and that drug activation in the intestine and kidney are likely major contributors to SN-38 production in vivo.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Camptotecina/análogos & derivados , Hidrolases de Éster Carboxílico/metabolismo , Intestino Delgado/metabolismo , Rim/metabolismo , Antineoplásicos Fitogênicos/metabolismo , Camptotecina/metabolismo , Camptotecina/farmacocinética , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Irinotecano , Microssomos , Especificidade de Órgãos
12.
Chem Res Toxicol ; 23(12): 1890-904, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21049984

RESUMO

Carboxylesterases (CES) have important roles in pesticide and drug metabolism and contribute to the clearance of ester-containing xenobiotics in mammals. Tissues with the highest levels of CES expression are the liver and small intestine. In addition to xenobiotics, CES also harness their broad substrate specificity to hydrolyze endobiotics, such as cholesteryl esters and triacylglycerols. Here, we determined if two human CES isoforms, CES1 and CES2, hydrolyze the endocannabinoids 2-arachidonoylglycerol (2AG) and anandamide (AEA), and two prostaglandin glyceryl esters (PG-Gs), which are formed by COX-mediated oxygenation of 2AG. We show that recombinant CES1 and CES2 efficiently hydrolyze 2AG to arachidonic acid (AA) but not amide-containing AEA. Steady-state kinetic parameters for CES1- and CES2-mediated 2AG hydrolysis were, respectively, kcat, 59 and 43 min(-1); Km, 49 and 46 µM; and kcat/Km, 1.2 and 0.93 µM(-1) min(-1). kcat/Km values are comparable to published values for rat monoacylglycerol lipase (MAGL)-catalyzed 2AG hydrolysis. Furthermore, we show that CES1 and CES2 also efficiently hydrolyze PGE2-G and PGF2α-G. In addition, when cultured human THP1 macrophages were treated with exogenous 2AG or PG-G (10 µM, 1 h), significant quantities of AA or PGs were detected in the culture medium; however, the ability of macrophages to metabolize these compounds was inhibited (60-80%) following treatment with paraoxon, the toxic metabolite of the insecticide parathion. Incubation of THP1 cell lysates with small-molecule inhibitors targeting CES1 (thieno[3,2-e][1]benzothiophene-4,5-dione or JZL184) significantly reduced lipid glyceryl ester hydrolase activities (40-50% for 2AG and 80-95% for PG-Gs). Immunodepletion of CES1 also markedly reduced 2AG and PG-G hydrolase activities. These results suggested that CES1 is in part responsible for the hydrolysis of 2AG and PG-Gs in THP1 cells, although it did not rule out a role for other hydrolases, especially with regard to 2AG metabolism since a substantial portion of its hydrolysis was not inactivated by the inhibitors. An enzyme (Mr 31-32 kDa) of unknown function was detected by serine hydrolase activity profiling of THP1 cells and may be a candidate. Finally, the amounts of in situ generated 2AG and PG-Gs in macrophages were enhanced by treating the cells with bioactive metabolites of OP insecticides. Collectively, the results suggest that in addition to MAGL and fatty-acid amide hydrolase (FAAH), which have both been documented to terminate endocannabinoid signaling, CES may also have a role. Furthermore, since PG-Gs have been shown to possess biological activities in their own right, CES may represent an important enzyme class that regulates their in vivo levels.


Assuntos
Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Inseticidas/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Paraoxon/toxicidade , Amidoidrolases/metabolismo , Ácidos Araquidônicos/metabolismo , Carboxilesterase/genética , Hidrolases de Éster Carboxílico/genética , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Endocanabinoides , Glicerídeos/metabolismo , Humanos , Hidrólise , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Espectrometria de Massas , Monócitos/imunologia , Alcamidas Poli-Insaturadas/metabolismo , Prostaglandinas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Biochim Biophys Acta ; 1781(10): 643-54, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18762277

RESUMO

Cholesteryl esters are hydrolyzed by cholesteryl ester hydrolase (CEH) yielding free cholesterol for export from macrophages. Hence, CEH has an important regulatory role in macrophage reverse cholesterol transport (RCT). CEH and human carboxylesterase 1 (CES1) appear to be the same enzyme. CES1 is inhibited by oxons, the bioactive metabolites of organophosphate (OP) pesticides. Here, we show that CES1 protein is robustly expressed in human THP-1 monocytes/macrophages and its biochemical activity inhibited following treatment of cell lysates and intact cells with chlorpyrifos oxon, paraoxon, or methyl paraoxon (with nanomolar IC(50) values) or after immunodepletion of CES1 protein. CES1 protein expression in cells is unaffected by a 24-h paraoxon treatment, suggesting that the reduced hydrolytic activity is due to covalent inhibition of CES1 by oxons and not down-regulation of expression. Most significantly, treatment of cholesterol-loaded macrophages with either paraoxon (a non-specific CES inhibitor) or benzil (a specific CES inhibitor) caused enhanced retention of intracellular cholesteryl esters and a "foamy" phenotype, consistent with reduced cholesteryl ester mobilization. Thus, exposure to OP pesticides, which results in the inhibition of CES1, may also inhibit macrophage RCT, an important process in the regression of atherosclerosis.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Ésteres do Colesterol/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Linhagem Celular , Clorpirifos/análogos & derivados , Clorpirifos/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Hidrolases/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Paraoxon/análogos & derivados , Paraoxon/farmacologia , Fenilglioxal/análogos & derivados , Fenilglioxal/farmacologia
14.
J Med Chem ; 51(2): 298-304, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18173233

RESUMO

Doxazolidine (Doxaz), a formaldehyde-doxorubicin (Dox) conjugate, exhibits markedly increased tumor toxicity with respect to Dox without a concurrent increase in toxicity to cardiomyocytes. Pentyl PABC-Doxaz (PPD) is a Doxaz carbamate prodrug that is hydrolyzed by carboxylesterases. Here, we identify human intestinal carboxylesterase (hiCE) as the agent of activation for PPD. Upon prodrug treatment, cells that express higher levels of hiCE responded with lower IC50 values for growth inhibition. Exposing MCF-7 human breast cancer cells, which respond poorly and express little hiCE, to PPD together with hiCE resulted in a dramatic decrease in the IC50, a decrease that was absent when human carboxylesterase 1 was added to prodrug treatment. Finally, U373MG glioblastoma cells overexpressing hiCE displayed approximately 100-fold reduction in the IC50 for PPD compared to cells lacking the carboxylesterase. Overall, our studies indicate that PPD is selectively hydrolyzed to the active metabolite by hiCE.


Assuntos
Antineoplásicos/metabolismo , Carbamatos/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Doxorrubicina/análogos & derivados , Intestinos/enzimologia , Pró-Fármacos/metabolismo , Antineoplásicos/farmacologia , Carbamatos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Humanos , Pró-Fármacos/farmacologia , Proteínas Recombinantes/metabolismo
15.
J Med Chem ; 50(23): 5727-34, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17941623

RESUMO

Carboxylesterases (CE) are ubiquitous enzymes responsible for the detoxification of xenobiotics, including numerous clinically used drugs. Therefore, the selective inhibition of these proteins may prove useful in modulating drug half-life and bioavailability. Recently, we identified 1,2-diones as potent inhibitors of CEs, although little selectivity was observed in the inhibition of either human liver CE (hCE1) or human intestinal CE (hiCE). In this paper, we have further examined the inhibitory properties of ethane-1,2-diones toward these proteins and determined that, when the carbonyl oxygen atoms are cis-coplanar, the compounds demonstrate specificity for hCE1. Conversely, when the dione oxygen atoms are not planar (or are trans-coplanar), the compounds are more potent at hiCE inhibition. These properties have been validated in over 40 1,2-diones that demonstrate inhibitory activity toward at least one of these enzymes. Statistical analysis of the results confirms the correlation (P < 0.001) between the dione dihedral angle and the preferential inhibition of either hiCE or hCE1. Overall, the results presented here define the parameters necessary for small molecule inhibition of human CEs.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Glioxal/análogos & derivados , Glioxal/síntese química , Acetilcolinesterase/química , Butirilcolinesterase/química , Hidrolases de Éster Carboxílico/química , Cristalografia por Raios X , Glioxal/química , Humanos , Intestinos/enzimologia , Modelos Moleculares , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
16.
J Med Chem ; 50(8): 1876-85, 2007 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-17378546

RESUMO

Carboxylesterases (CE) are ubiquitous enzymes thought to be responsible for the metabolism and detoxification of xenobiotics. Numerous clinically used drugs including Demerol, lidocaine, capecitabine, and CPT-11 are hydrolyzed by these enzymes. Hence, the identification and application of selective CE inhibitors may prove useful in modulating the metabolism of esterified drugs in vivo. Having recently identified benzil (diphenylethane-1,2-dione) as a potent selective inhibitor of CEs, we sought to evaluate the inhibitory activity of related 1,2-diones toward these enzymes. Biochemical assays and kinetic studies demonstrated that isatins (indole-2,3-diones), containing hydrophobic groups attached at a variety of positions within these molecules, could act as potent, specific CE inhibitors. Interestingly, the inhibitory potency of the isatin compounds was related to their hydrophobicity, such that compounds with clogP values of <1.25 were ineffective at enzyme inhibition. Conversely, analogs demonstrating clogP values>5 routinely yielded Ki values in the nM range. Furthermore, excellent 3D QSAR correlates were obtained for two human CEs, hCE1 and hiCE. While the isatin analogues were generally less effective at CE inhibition than the benzils, the former may represent valid lead compounds for the development of inhibitors for use in modulating drug metabolism in vivo.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/química , Isatina/análogos & derivados , Isatina/síntese química , Relação Quantitativa Estrutura-Atividade , Acetilcolinesterase/química , Butirilcolinesterase/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isatina/química , Modelos Moleculares
17.
Comp Biochem Physiol B Biochem Mol Biol ; 144(4): 423-31, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16815060

RESUMO

Low-molecular-weight chromium-binding substance (LMWCr), also known as chromodulin, is a chromium-binding oligopeptide proposed to have a function in chromium transport and insulin signaling in mammals. In this work, LMWCr has been isolated and purified for the first time from non-mammalian sources: chicken and American alligator. Milligram quantities of the oligopeptide can be obtained from kilogram quantities of liver. The LMWCr's from both sources are asparatate- and glutamate-rich oligopeptides which possess multinuclear chromium assemblies. The composition and physical and spectroscopic properties of the avian and reptilian LMWCr's are extremely similar to those of their mammalian analogues, suggesting the multinuclear sites of the biomolecule from all three classes of animal possess very similar structures. The chicken and alligator oligopeptides may possess intrinsic phosphotyrosine phosphatase activity.


Assuntos
Cromo/metabolismo , Extratos Hepáticos/química , Oligopeptídeos/isolamento & purificação , Adipócitos/enzimologia , Jacarés e Crocodilos , Animais , Ácido Aspártico/química , Galinhas , Ácido Glutâmico/química , Técnicas In Vitro , Masculino , Oligopeptídeos/metabolismo , Proteínas Tirosina Fosfatases/isolamento & purificação , Proteínas Tirosina Fosfatases/metabolismo , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
18.
Mol Cancer Ther ; 5(6): 1577-84, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16818517

RESUMO

Enzyme-prodrug approaches to cancer therapy, theoretically, have the potential to mediate tumor-selective cytotoxicity. However, even if tumor-specific prodrug activation is achieved, enzyme-prodrug systems investigated thus far comprised a single enzyme and a specific prodrug. Although targeted, such systems constitute single-agent therapy, which may be ineffective and/or may promote development of drug resistance. Therefore, a goal of our laboratories was to design and characterize a novel dipiperidinyl derivative of etoposide [1,4'-dipiperidine-1'-carboxylate-etoposide (dp-VP16)] that would act as a prodrug. We envisioned that dp-VP16 would be converted to the active chemotherapeutic agent VP-16 by the same rabbit carboxylesterase (rCE) that we have previously shown to efficiently activate the prodrug irinotecan (CPT-11). This dp-VP16 prodrug might then be used in combination with CPT-11, with both drugs activated by a single enzyme. We evaluated the ability of pure rCE and two human carboxylesterases, hCE1 and hiCE (hCE2), to activate dp-VP16 in vitro, and in neuroblastoma cell lines designed to express/overexpress each enzyme. In SK-N-AS neuroblastoma cell transfectants, expression of rCE or hiCE decreased the IC50 of dp-VP16 as a single agent by 8.3- and 3.4-fold, respectively, in growth inhibition assays. Purified hCE1 did not metabolize dp-VP16 in vitro and did not affect its IC50 in intact cells. The combination indices of sequential exposure to CPT-11 followed by dp-VP16 ranged from approximately 0.4 to 0.6, suggesting that this combination produced greater-than-additive cytotoxicity in neuroblastoma cells expressing rCE. These data provide proof-of-principle that enzyme-prodrug therapy approaches comprised of prodrugs with complementary mechanisms of cytotoxicity that are activated by a single enzyme can be developed.


Assuntos
Carboxilesterase/antagonistas & inibidores , Etoposídeo/uso terapêutico , Neuroblastoma/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Animais , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Carboxilesterase/metabolismo , Catálise , Divisão Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Irinotecano , Estrutura Molecular , Neuroblastoma/enzimologia , Coelhos , Células Tumorais Cultivadas
19.
Acta Crystallogr C ; 58(Pt 3): m182-5, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11870296

RESUMO

The reaction of Cu(ClO(4))(2) x 6H(2)O, NaAsF(6) and excess pyrazole yields hexakis(pyrazole-kappa N(2))copper(II) bis(hexafluoroarsenate), [Cu(C(3)H(4)N(2))(6)](AsF(6))(2) or [Cu(pzH)(6)](AsF(6))(2) (pzH is pyrazole), (I). The analogous hexakis(pyrazole-kappa N(2))copper(II) hexafluorophosphate perchlorate complex, [Cu(C(3)H(4)N(2))(6)](PF(6))(1.29)(ClO(4))(0.71) or [Cu(pzH)(6)](PF(6))(1.29)(ClO(4))(0.71), (II), is obtained in a similar fashion, using KPF(6) in place of NaAsF(6). Both compounds contain the hitherto unknown [Cu(pzH)(6)](2+) complex cation, in which the copper(II) ion lies at the center of a regular octahedron of coordinated N atoms. The cation has crystallographically imposed -3 symmetry. The X-ray data indicate that the lack of the expected distortion can be accounted for by the presence of either static Jahn-Teller disorder or dynamic Jahn-Teller distortion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...