Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biochem ; 100(2): 269-76, 1986 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-3782051

RESUMO

The crystal structures of sperm whale metmyoglobins reconstituted with four modified hemes, isopemptoheme, pemptoheme, 2-ethyldeuteroheme, and 4-ethyldeuteroheme, have been determined and refined at 2.2 A resolution to R = 0.217, 0.218, 0.213, and 0.222, respectively. All the crystals of these myoglobins are isomorphous with that of native metmyoglobin. The structural changes of the modified myoglobin from the native myoglobin were examined on difference Fourier maps; the orientation of 4-ethyldeuteroheme in the heme pocket is such that the heme is rotated by 180 degrees about an axis through the alpha-gamma-meso carbons, whereas the orientations of the other three hemes are the same as that of the protoheme in the native myoglobin. The changes of the structures around the heme become greater in the order of isopemptoheme, 2-ethyldeuteroheme less than pemptoheme less than 4-ethyldeuteroheme. The magnitudes of the changes seem to be related to the oxygen affinities of these four reconstituted myoglobins.


Assuntos
Heme , Mioglobina , Animais , Cristalização , Análise de Fourier , Matemática , Conformação Proteica , Baleias
2.
J Biochem ; 100(2): 277-84, 1986 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-3782052

RESUMO

The crystal structures of sperm whale metmyoglobins reconstituted with three kinds of modified hemes, 2,4-diisopropyldeuteroheme, 2-isopropyl-4-vinyldeuteroheme, and 2-vinyl-4-isopropyldeuteroheme, have been determined and refined at 2.2 A resolution to R = 0.216, 0.219, and 0.195, respectively. All the crystals of these myoglobins are isomorphous with that of native metmyoglobin. The 2-vinyl-4-isopropyldeuteroheme was found to be in a reverse orientation, in which the heme plane is rotated by 180 degrees about an axis through the alpha-gamma-meso carbons, whereas the orientations of the other two hemes were the same as that of protoheme in native myoglobin. In the myoglobins with 2,4-diisopropyldeuteroheme and 2-vinyl-4-isopropyldeuteroheme, both of which have lower oxygen affinities than native myoglobin, the bulky isopropyl side chain pushes Phe 43 0.7 A toward His 64 (the distal histidine) in the former, and the whole E helix at most 1.5 A, including a 0.7 A shift of the His 64 imidazole ring, in the latter. The changes of the structures prevent His 64 from forming a hydrogen bond with the liganded oxygen molecule, so that these two modified myoglobins show low oxygen affinities. On the other hand, there is no such drastic displacement in myoglobin with 2-isopropyl-4-vinyldeuteroheme, which has a slightly higher oxygen affinity than native myoglobin.


Assuntos
Heme , Mioglobina , Oxigênio/metabolismo , Animais , Cristalização , Deuteroporfirinas , Análise de Fourier , Heme/análogos & derivados , Conformação Proteica , Baleias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...