Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Inst Mech Eng H ; 222(7): 1073-80, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19024155

RESUMO

Alumina ceramic heads have been previously shown to reduce polyethylene wear in comparison to cobalt chrome (CoCr) heads in artificial hip joints. However, there are concerns about the brittle nature of ceramics. It is therefore of interest to investigate ceramic-like coatings on metallic heads. The aim of this study was to compare the friction and wear of ultra-high molecular weight polyethylene (UHMWPE) against alumina ceramic, CoCr, and surface-engineered ceramic-like coatings in a friction simulator and a hip joint simulator. All femoral heads tested were 28 mm diameter and included: Biolox Forte alumina, CoCr, arc evaporative physical vapour deposition (AEPVD) chromium nitride (CrN) coated CoCr, plasma-assisted chemical vapour deposition (PACVD) amorphous diamond-like carbon (aDLC) coated CoCr, sputter CrN coated CoCr, reactive gas controlled arc (RGCA) AEPVD titanium nitride (TiN) coated CoCr, and Graphit-iC coated CoCr. These were articulated against UHMWPE acetabular cups in a friction simulator and a hip joint simulator. Alumina and CoCr gave the lowest wear volumes whereas the sputter coated CrN gave the highest. Alumina also had the lowest friction factor. There was an association between surface parameters and wear. This study indicates that surface topography of surface-engineered femoral heads is more important than friction and wettability in controlling UHMWPE wear.


Assuntos
Acetábulo , Análise de Falha de Equipamento , Cabeça do Fêmur , Prótese de Quadril , Polietilenos/química , Falha de Prótese , Humanos , Teste de Materiais , Propriedades de Superfície
2.
J Mater Sci Mater Med ; 15(3): 225-35, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15334994

RESUMO

The wear of existing metal-on-metal (MOM) hip prostheses (1 mm3/million cycles) is much lower than the more widely used polyethylene-on-metal bearings (30-100 mm3/million cycles). However, there remain some potential concerns about the toxicity of metal wear particles and elevated metal ion levels, both locally and systemically in the human body. The aim of this study was to investigate the wear, wear debris and ion release of fully coated surface engineered MOM bearings for hip prostheses. Using a physiological anatomical hip joint simulator, five different bearing systems involving three thick (8-12 microm) coatings, TiN, CrN and CrCN, and one thin (2 microm) coating diamond like carbon (DLC) were evaluated and compared to a clinically used MOM cobalt chrome alloy bearing couple. The overall wear rates of the surface engineered prostheses were at least 18-fold lower than the traditional MOM prostheses after 2 million cycles and 36-fold lower after 5 million cycles. Consequently, the volume of wear debris and the ion levels in the lubricants were substantially lower. These parameters were also much lower than in half coated (femoral heads only) systems that have been reported previously. The extremely low volume of wear debris and concentration of metal ions released by these surface engineered systems, especially with CrN and CrCN coatings, have considerable potential for the clinical application of this technology.


Assuntos
Prótese de Quadril , Engenharia Biomédica , Materiais Revestidos Biocompatíveis , Humanos , Técnicas In Vitro , Teste de Materiais/instrumentação , Teste de Materiais/métodos , Metais , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Falha de Prótese , Espectrofotometria Atômica , Propriedades de Superfície
3.
Proc Inst Mech Eng H ; 216(4): 219-30, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12206518

RESUMO

Although the wear of existing metal-on-metal (MOM) hip prostheses (1 mm3/10(6) cycles) is much lower than the more widely used polyethylene-on-metal bearings, there are concerns about the toxicity of metal wear particles and elevated metal ion levels, both locally and systemically, in the human body. The aim of this study was to investigate the possibility of reducing the volume of wear, the concentration of metal debris and the level of metal ion release through using surface-engineered femoral heads. Three thick (8-12 microm) coatings (TiN, CrN and CrCN) and one thin (2 microm) coating (diamond-like carbon, DLC), were evaluated on the femoral heads when articulating against high carbon content cobalt-chromium alloy acetabular inserts (HC CoCrMo) and compared with a clinically used MOM cobalt-chromium alloy bearing couple using a physiological anatomical hip joint simulator (Leeds Mark II). This study showed that CrN, CrCN and DLC coatings produced substantially lower wear volumes for both the coated femoral heads and the HC CoCrMo inserts. The TiN coating itself had little wear, but it caused relatively high wear of the HC CoCrMo inserts compared with the other coatings. The majority of the wear debris for all half-coated couples comprised small, 30 nm or less, CoCrMo metal particles. The Co, Cr and Mo ion concentrations released from the bearing couples of CrN-, CrCN- and DLC-coated heads articulating against HC CoCrMo inserts were at least 7 times lower than those released from the clinical MOM prostheses. These surface-engineered femoral heads articulating on HC CoCrMo acetabular inserts produced significantly lower wear volumes and rates, and hence lower volumetric concentrations of wear particles, compared with the clinical MOM prosthesis. The substantially lower ion concentration released by these surface-engineered components provides important evidence to support the clinical application of this technology.


Assuntos
Materiais Revestidos Biocompatíveis/química , Análise de Falha de Equipamento/métodos , Prótese de Quadril , Teste de Materiais/métodos , Desenho de Prótese/métodos , Carbono/química , Ligas de Cromo/química , Análise de Falha de Equipamento/instrumentação , Fricção , Dureza , Testes de Dureza , Teste de Materiais/instrumentação , Modelos Biológicos , Níquel/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...