Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(1)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257813

RESUMO

Human Papillomaviruses have been associated with the occurrence of cervical cancer, the fourth most common cancer that affects women globally, while 70% of cases are caused by infection with the high-risk types HPV16 and HPV18. The integration of these viruses' oncogenes E6 and E7 into the host's genome affects a multitude of cellular functions and alters the expression of molecules. The aim of this study was to investigate how these oncogenes contribute to the expression of immune system control molecules, using cell lines with integrated HPV16 genome, before and after knocking out E6 viral gene using the CRISPR/Cas9 system, delivered with a lentiviral vector. The molecules studied are the T-cell inactivating protein PD-L1, its transcription factor HIF-1a and the latter's negative regulator, miR-143. According to our results, in the E6 knock out (E6KO) cell lines an increased expression of miR-143 was recorded, while a decrease in the expression of HIF-1a and PD-L1 was exhibited. These findings indicate that E6 protein probably plays a significant role in enabling cervical cancer cells to evade the immune system, while we propose a molecular pathway in cervical cancer, where PD-L1's expression is regulated by E6 protein through a miR-143/HIF-1a axis.


Assuntos
Evasão da Resposta Imune , MicroRNAs , Proteínas Oncogênicas Virais , Neoplasias do Colo do Útero , Feminino , Humanos , Antígeno B7-H1/genética , Papillomavirus Humano 16/genética , MicroRNAs/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia , Proteínas Oncogênicas Virais/genética
2.
Micromachines (Basel) ; 14(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37893266

RESUMO

In the last decade, there has been a notable advancement in diverse bioreactor types catering to various applications. However, conventional bioreactors often exhibit bulkiness and high costs, making them less accessible to many researchers and laboratory facilities. In light of these challenges, this article aims to introduce and evaluate the development of a do-it-yourself (DIY) 3D printed smart bioreactor, offering a cost-effective and user-friendly solution for the proliferation of various bioentities, including bacteria and human organoids, among others. The customized bioreactor was fabricated under an ergonomic design and assembled with 3D printed mechanical parts combined with electronic components, under 3D printed housing. The 3D printed parts were designed using SOLIDWORKS® CAD Software (2022 SP2.0 Professional version) and fabricated via the fused filament fabrication (FFF) technique. All parts were 3D printed with acrylonitrile butadiene styrene (ABS) in order for the bioreactor to be used under sterile conditions. The printed low-cost bioreactor integrates Internet-of-things (IoT) functionalities, since it provides the operator with the ability to change its operational parameters (sampling frequency, rotor speed, and duty cycle) remotely, via a user-friendly developed mobile application and to save the user history locally on the device. Using this bioreactor, which is adjusted to a standard commercial 12-well plate, proof of concept of a successful operation of the bioreactor during a 2-day culture of Escherichia coli bacteria (Mach1 strain) is presented. This study paves the way for more in-depth investigation of bacterial and various biological-entity growth cultures, utilizing 3D printing technology to create customized low-cost bioreactors.

3.
J Cardiovasc Dev Dis ; 9(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35323638

RESUMO

Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality. Interestingly, male and female patients with CVD exhibit distinct epidemiological and pathophysiological characteristics, implying a potentially important role for primary and secondary sex determination factors in heart development, aging, disease and therapeutic responses. Here, we provide a concise review of the field and discuss current gaps in knowledge as a step towards elucidating the "sex determination-heart axis". We specifically focus on cardiovascular manifestations of abnormal sex determination in humans, such as in Turner and Klinefelter syndromes, as well as on the differences in cardiac regenerative potential between species with plastic and non-plastic sexual phenotypes. Sex-biased cardiac repair mechanisms are also discussed with a focus on the role of the steroid hormone 17ß-estradiol. Understanding the "sex determination-heart axis" may offer new therapeutic possibilities for enhanced cardiac regeneration and/or repair post-injury.

4.
Int J Dev Biol ; 66(1-2-3): 59-75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34881787

RESUMO

Current progress and challenges in understanding the molecular and cellular mechanisms of cardiomyocyte embryonic development and regeneration are reviewed in our present work. Three major topics are critically discussed: how do cardiomyocytes form in the embryo? What is the adult origin of the cells that regenerate cardiomyocytes in animal models with adult heart regeneration capabilities? Can the promise of therapeutic cardiomyocyte regeneration be realized in humans? In the first topic, we highlight current advances in understanding the developmental biology of cardiomyocytes, with emphasis on the regulative capabilities of the early embryo during specification and allocation of the cardiomyoblasts that produce the primordial heart. We place further emphasis on trabecular cardiomyocyte development from late cardiomyoblasts, neural crest cells and primordial cardiomyocytes, and their critical role in the clonal growth of the compact/septal and cortical cardiomyocyte layers in the mammalian embryo and adult zebrafish, respectively. In the second topic, we focus on the re-activation of the cortical or trabecular compaction programs as hallmarks of cardiomyocyte regenerative cells during adult zebrafish and neonatal mouse heart regeneration, respectively, and underscore the metabolic remodeling that commonly drives cardiomyocyte regeneration in these organisms. Finally, we discuss the status of preclinical and clinical-stage therapeutics for cardiomyocyte regeneration, with particular emphasis on gene therapy, as well as adult and pluripotent stem cell-based cellular cardiomyoplasty approaches. In summary, our article provides a bird's-eye view of current knowledge and potential pitfalls in the field of developmental biology-guided regenerative medicine strategies for the treatment of heart diseases.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Biologia , Diferenciação Celular , Proliferação de Células , Coração , Mamíferos , Camundongos
5.
Artigo em Inglês | MEDLINE | ID: mdl-34790975

RESUMO

INTRODUCTION: Induced pluripotent stem cells (iPSCs) provide a model of cardiomyocyte (CM) maturation. Nitric oxide signaling promotes CM differentiation and maturation, although the mechanisms remain controversial. AIM: The study tested the hypothesis that in the absence of S-nitrosoglutathione reductase (GSNOR), a denitrosylase regulating protein S-nitrosylation, the resultant increased S-nitrosylation accelerates the differentiation and maturation of iPSC-derived cardiomyocytes (CMs). METHODS AND RESULTS: iPSCs derived from mice lacking GSNOR (iPSCGSNOR-/-) matured faster than wildtype iPSCs (iPSCWT) and demonstrated transient increases in expression of murine Snail Family Transcriptional Repressor 1 gene (Snail), murine Snail Family Transcriptional Repressor 2 gene (Slug) and murine Twist Family BHLH Transcription Factor 1 gene (Twist), transcription factors that promote epithelial-to-mesenchymal transition (EMT) and that are regulated by Glycogen Synthase Kinase 3 Beta (GSK3ß). Murine Glycogen Synthase Kinase 3 Beta (Gsk3ß) gene exhibited much greater S-nitrosylation, but lower expression in iPSCGSNOR-/-. S-nitrosoglutathione (GSNO)-treated iPSCWT and human (h)iPSCs also demonstrated reduced expression of GSK3ß. Nkx2.5 expression, a CM marker, was increased in iPSCGSNOR-/- upon directed differentiation toward CMs on Day 4, whereas murine Brachyury (t), Isl1, and GATA Binding Protein (Gata4) mRNA were decreased, compared to iPSCWT, suggesting that GSNOR deficiency promotes CM differentiation beginning immediately following cell adherence to the culture dish-transitioning from mesoderm to cardiac progenitor. CONCLUSION: Together these findings suggest that increased S-nitrosylation of Gsk3ß promotes CM differentiation and maturation from iPSCs. Manipulating the post-translational modification of GSK3ß may provide an important translational target and offers new insight into understanding of CM differentiation from pluripotent stem cells. ONE SENTENCE SUMMARY: Deficiency of GSNOR or addition of GSNO accelerates early differentiation and maturation of iPSC-cardiomyocytes.

6.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268364

RESUMO

The degree to which populations of cardiac progenitors (CPCs) persist in the postnatal heart remains a controversial issue in cardiobiology. To address this question, we conducted a spatiotemporally resolved analysis of CPC deployment dynamics, tracking cells expressing the pan-CPC gene Isl1 Most CPCs undergo programmed silencing during early cardiogenesis through proteasome-mediated and PRC2 (Polycomb group repressive complex 2)-mediated Isl1 repression, selectively in the outflow tract. A notable exception is a domain of cardiac neural crest cells (CNCs) in the inflow tract. These "dorsal CNCs" are regulated through a Wnt/ß-catenin/Isl1 feedback loop and generate a limited number of trabecular cardiomyocytes that undergo multiple clonal divisions during compaction, to eventually produce ~10% of the biventricular myocardium. After birth, CNCs continue to generate cardiomyocytes that, however, exhibit diminished clonal amplification dynamics. Thus, although the postnatal heart sustains cardiomyocyte-producing CNCs, their regenerative potential is likely diminished by the loss of trabeculation-like proliferative properties.

7.
J Am Coll Cardiol ; 73(21): 2705-2718, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31146816

RESUMO

BACKGROUND: Patients with chronic kidney disease (CKD) and coincident heart failure with preserved ejection fraction (HFpEF) may constitute a distinct HFpEF phenotype. Osteopontin (OPN) is a biomarker of HFpEF and predictive of disease outcome. We recently reported that OPN blockade reversed hypertension, mitochondrial dysfunction, and kidney failure in Col4a3-/- mice, a model of human Alport syndrome. OBJECTIVES: The purpose of this study was to identify potential OPN targets in biopsies of HF patients, healthy control subjects, and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), and to characterize the cardiac phenotype of Col4a3-/- mice, relate this to HFpEF, and investigate possible causative roles for OPN in driving the cardiomyopathy. METHODS: OGDHL mRNA and protein were quantified in myocardial samples from patients with HFpEF, heart failure with reduced ejection fraction, and donor control subjects. OGDHL expression was quantified in hiPS-CMs treated with or without anti-OPN antibody. Cardiac parameters were evaluated in Col4a3-/- mice with and without global OPN knockout or AAV9-mediated delivery of 2-oxoglutarate dehydrogenase-like (Ogdhl) to the heart. RESULTS: OGDHL mRNA and protein displayed abnormal abundances in cardiac biopsies of HFpEF (n = 17) compared with donor control subjects (n = 12; p < 0.01) or heart failure with reduced ejection fraction patients (n = 12; p < 0.05). Blockade of OPN in hiPS-CMs conferred increased OGDHL expression. Col4a3-/- mice demonstrated cardiomyopathy with similarities to HFpEF, including diastolic dysfunction, cardiac hypertrophy and fibrosis, pulmonary edema, and impaired mitochondrial function. The cardiomyopathy was ameliorated by Opn-/- coincident with improved renal function and increased expression of Ogdhl. Heart-specific overexpression of Ogdhl in Col4a3-/- mice also improved cardiac function and cardiomyocyte energy state. CONCLUSIONS: Col4a3-/- mice present a model of HFpEF secondary to CKD wherein OPN and OGDHL are intermediates, and possibly therapeutic targets.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca Diastólica/etiologia , Complexo Cetoglutarato Desidrogenase/metabolismo , Osteopontina/metabolismo , Disfunção Ventricular Esquerda/etiologia , Animais , Autoantígenos/genética , Colágeno Tipo IV/genética , Fibrose , Terapia Genética , Insuficiência Cardíaca Diastólica/metabolismo , Insuficiência Cardíaca Diastólica/patologia , Insuficiência Cardíaca Diastólica/terapia , Complexo Cetoglutarato Desidrogenase/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Nefrite Hereditária/complicações , Osteopontina/genética , Estresse Oxidativo , Disfunção Ventricular Esquerda/metabolismo
8.
Circ Res ; 124(8): 1184-1197, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30744497

RESUMO

RATIONALE: Although rare cardiomyogenesis is reported in the adult mammalian heart, whether this results from differentiation or proliferation of cardiomyogenic cells remains controversial. The tumor suppressor genes RB1 (retinoblastoma) and CDKN2a (cyclin-dependent kinase inhibitor 2a) are critical cell-cycle regulators, but their roles in human cardiomyogenesis remains unclear. OBJECTIVE: We hypothesized that developmental activation of RB1 and CDKN2a cooperatively cause permanent cell-cycle withdrawal of human cardiac precursors (CPCs) driving terminal differentiation into mature cardiomyocytes, and that dual inactivation of these tumor suppressor genes promotes myocyte cell-cycle reentry. METHODS AND RESULTS: Directed differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes revealed that RB1 and CDKN2a are upregulated at the onset of cardiac precursor specification, simultaneously with GATA4 (GATA-binding protein 4) homeobox genes PBX1 (pre-B-cell leukemia transcription factor 1) and MEIS1 (myeloid ecotropic viral integration site 1 homolog), and remain so until terminal cardiomyocyte differentiation. In both GATA4+ hPSC cardiac precursors and postmitotic hPSC-cardiomyocytes, RB1 is hyperphosphorylated and inactivated. Transient, stage-specific, depletion of RB1 during hPSC differentiation enhances cardiomyogenesis at the cardiac precursors stage, but not in terminally differentiated hPSC-cardiomyocytes, by transiently upregulating GATA4 expression through a cell-cycle regulatory pathway involving CDKN2a. Importantly, cytokinesis in postmitotic hPSC-cardiomyocytes can be induced with transient, dual RB1, and CDKN2a silencing. The relevance of this pathway in vivo was suggested by findings in a porcine model of cardiac cell therapy post-MI, whereby dual RB1 and CDKN2a inactivation in adult GATA4+ cells correlates with the degree of scar size reduction and endogenous cardiomyocyte mitosis, particularly in response to combined transendocardial injection of adult human hMSCs (bone marrow-derived mesenchymal stromal cells) and cKit+ cardiac cells. CONCLUSIONS: Together these findings reveal an important and coordinated role for RB1 and CDKN2a in regulating cell-cycle progression and differentiation during human cardiomyogenesis. Moreover, transient, dual inactivation of RB1 and CDKN2a in endogenous adult GATA4+ cells and cardiomyocytes mediates, at least in part, the beneficial effects of cell-based therapy in a post-MI large mammalian model, a finding with potential clinical implications.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Genes do Retinoblastoma/fisiologia , Genes p16/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Linhagem Celular , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Inativação Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Proteína Meis1/genética , Proteína Meis1/metabolismo , Células-Tronco Pluripotentes/transplante , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Suínos , Regulação para Cima
9.
J Am Heart Assoc ; 7(14)2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30005555

RESUMO

BACKGROUND: Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) differ in histopathology and prognosis. Although transendocardial delivery of mesenchymal stem cells is safe and provides cardiovascular benefits in both, a comparison of mesenchymal stem cell efficacy in ICM versus DCM has not been done. METHODS AND RESULTS: We conducted a subanalysis of 3 single-center, randomized, and blinded clinical trials: (1) TAC-HFT (Transendocardial Autologous Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells in Ischemic Heart Failure Trial); (2) POSEIDON (A Phase I/II, Randomized Pilot Study of the Comparative Safety and Efficacy of Transendocardial Injection of Autologous Mesenchymal Stem Cells Versus Allogeneic Mesenchymal Stem Cells in Patients With Chronic Ischemic Left Ventricular Dysfunction Secondary to Myocardial Infarction); and (3) POSEIDON-DCM (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy). Baseline and 1-year cardiac structure and function and quality-of-life data were compared in a post hoc pooled analysis including ICM (n=46) and DCM (n=33) patients who received autologous or allogeneic mesenchymal stem cells. Ejection fraction improved in DCM by 7% (within-group, P=0.002) compared to ICM (1.5%; within-group, P=0.14; between-group, P=0.003). Similarly, stroke volume increased in DCM by 10.59 mL (P=0.046) versus ICM (-0.2 mL; P=0.73; between-group, P=0.02). End-diastolic volume improved only in ICM (10.6 mL; P=0.04) and end-systolic volume improved only in DCM (17.8 mL; P=0.049). The sphericity index decreased only in ICM (-0.04; P=0.0002). End-diastolic mass increased in ICM (23.1 g; P<0.0001) versus DCM (-4.1 g; P=0.34; between-group, P=0.007). The 6-minute walk test improved in DCM (31.1 m; P=0.009) and ICM (36.3 m; P=0.006) with no between-group difference (P=0.79). The New York Heart Association class improved in DCM (P=0.005) and ICM (P=0.02; between-group P=0.20). The Minnesota Living with Heart Failure Questionnaire improved in DCM (-19.5; P=0.002) and ICM (-6.4; P=0.03; δ between-group difference P=0.042) patients. CONCLUSIONS: Mesenchymal stem cell therapy is beneficial in DCM and ICM patients, despite variable effects on cardiac phenotypic outcomes. Whereas cardiac function improved preferentially in DCM patients, ICM patients experienced reverse remodeling. Mesenchymal stem cell therapy enhanced quality of life and functional capacity in both etiologies. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifiers: TAC-HFT: NCT00768066, POSEIDON: NCT01087996, POSEIDON-DCM: NCT01392625.


Assuntos
Cardiomiopatia Dilatada/terapia , Insuficiência Cardíaca/terapia , Transplante de Células-Tronco Mesenquimais , Disfunção Ventricular Esquerda/terapia , Adulto , Idoso , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Cardiomiopatias/terapia , Cardiomiopatia Dilatada/fisiopatologia , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Isquemia Miocárdica/complicações , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Volume Sistólico , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular
10.
Mol Ther ; 26(7): 1610-1623, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29807782

RESUMO

Administration of mesenchymal stem cells (MSCs) to diseased hearts improves cardiac function and reduces scar size. These effects occur via the stimulation of endogenous repair mechanisms, including regulation of immune responses, tissue perfusion, inhibition of fibrosis, and proliferation of resident cardiac cells, although rare events of transdifferentiation into cardiomyocytes and vascular components are also described in animal models. While these improvements demonstrate the potential of stem cell therapy, the goal of full cardiac recovery has yet to be realized in either preclinical or clinical studies. To reach this goal, novel cell-based therapeutic approaches are needed. Ongoing studies include cell combinations, incorporation of MSCs into biomaterials, or pre-conditioning or genetic manipulation of MSCs to boost their release of paracrine factors, such as exosomes, growth factors, microRNAs, etc. All of these approaches can augment therapeutic efficacy. Further study of the optimal route of administration, the correct dose, the best cell population(s), and timing for treatment are parameters that still need to be addressed in order to achieve the goal of complete cardiac regeneration. Despite significant progress, many challenges remain.


Assuntos
Doenças Cardiovasculares/terapia , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Fibrose/terapia , Humanos , Miócitos Cardíacos/citologia , Regeneração/fisiologia
11.
Differentiation ; 101: 16-24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29626713

RESUMO

A variety of approaches have been developed for the derivation of hepatocyte-like cells from pluripotent stem cells. Currently, most of these strategies employ step-wise differentiation approaches with recombinant growth-factors or small-molecule analogs to recapitulate developmental signaling pathways. Here, we tested the efficacy of a small-molecule based differentiation protocol for the generation of hepatocyte-like cells from human pluripotent stem cells. Quantitative gene-expression, immunohistochemical, and western blot analyses for SOX17, FOXA2, CXCR4, HNF4A, AFP, indicated the stage-specific differentiation into definitive endoderm, hepatoblast and hepatocyte-like derivatives. Furthermore, hepatocyte-like cells displayed morphological and functional features characteristic of primary hepatocytes, as indicated by the production of ALB (albumin) and α-1-antitrypsin (A1AT), as well as glycogen storage capacity by periodic acid-Schiff staining. Together, these data support that the small-molecule based hepatic differentiation protocol is a simple, reproducible, and inexpensive method to efficiently drive the differentiation of human pluripotent stem cells towards a hepatocyte-like phenotype, for downstream pharmacogenomic and regenerative medicine applications.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Endoderma/citologia , Endoderma/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hepatócitos/citologia , Humanos , Fígado/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia
12.
Stem Cells Dev ; 27(12): 819-830, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29336212

RESUMO

Microgravity-induced alterations in the autonomic nervous system (ANS) contribute to derangements in both the mechanical and electrophysiological function of the cardiovascular system, leading to severe symptoms in humans following space travel. Because the ANS forms embryonically from neural crest (NC) progenitors, we hypothesized that microgravity can impair NC-derived cardiac structures. Accordingly, we conducted in vitro simulated microgravity experiments employing NC genetic lineage tracing in mice with cKitCreERT2/+, Isl1nLacZ, and Wnt1-Cre reporter alleles. Inducible fate mapping in adult mouse hearts and pluripotent stem cells (iPSCs) demonstrated reduced cKitCreERT2/+-mediated labeling of both NC-derived cardiomyocytes and autonomic neurons (P < 0.0005 vs. controls). Whole transcriptome analysis, suggested that this effect was associated with repressed cardiac NC- and upregulated mesoderm-related gene expression profiles, coupled with abnormal bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-ß) and Wnt/ß-catenin signaling. To separate the manifestations of simulated microgravity on NC versus mesodermal-cardiac derivatives, we conducted Isl1nLacZ lineage analyses, which indicated an approximately 3-fold expansion (P < 0.05) in mesoderm-derived Isl-1+ pacemaker sinoatrial nodal cells; and an approximately 3-fold reduction (P < 0.05) in cardiac NC-derived ANS cells, including sympathetic nerves and Isl-1+ cardiac ganglia. Finally, NC-specific fate mapping with a Wnt1-Cre reporter iPSC model of murine NC development confirmed that simulated microgravity directly impacted the in vitro development of cardiac NC progenitors and their contribution to the sympathetic and parasympathetic innervation of the iPSC-derived myocardium. Altogether, these findings reveal an important role for gravity in the development of NCs and their postnatal derivatives, and have important therapeutic implications for human space exploration, providing insights into cellular and molecular mechanisms of microgravity-induced cardiomyopathies/channelopathies.


Assuntos
Sistema Nervoso Autônomo/metabolismo , Diferenciação Celular , Sistema de Condução Cardíaco/metabolismo , Crista Neural/metabolismo , Neurogênese , Ausência de Peso/efeitos adversos , Via de Sinalização Wnt , Animais , Sistema Nervoso Autônomo/patologia , Sistema de Condução Cardíaco/patologia , Humanos , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Crista Neural/patologia , Simulação de Ausência de Peso
13.
Stem Cell Res ; 23: 20-32, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28672156

RESUMO

Progress in cell therapy for retinal disorders has been challenging. Recognized retinal progenitors are a heterogeneous population of cells that lack surface markers for the isolation of live cells for clinical implementation. In the present application, our objective was to use the stem cell factor receptor c-Kit (CD117), a surface marker, to isolate and evaluate a distinct progenitor cell population from retinas of postnatal and adult mice. Here we report that, by combining traditional methods with fate mapping, we have identified a c-Kit-positive (c-Kit+) retinal progenitor cell (RPC) that is self-renewing and clonogenic in vitro, and capable of generating many cell types in vitro and in vivo. Based on cell lineage tracing, significant subpopulations of photoreceptors in the outer nuclear layer and bipolar, horizontal, amacrine and Müller cells in the inner nuclear layer are the progeny of c-Kit+ cells in vivo. The RPC progeny contributes to retinal neurons and glial cells, which are responsible for the conversion of light into visual signals. The ability to isolate and expand in vitro live c-Kit+ RPCs makes them a future therapeutic option for retinal diseases.


Assuntos
Envelhecimento/fisiologia , Retina/citologia , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Linhagem da Célula/efeitos dos fármacos , Separação Celular , Células Ependimogliais/citologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tamoxifeno/farmacologia , Fatores de Tempo
15.
J Am Coll Cardiol ; 69(5): 526-537, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-27856208

RESUMO

BACKGROUND: Although human mesenchymal stem cells (hMSCs) have been tested in ischemic cardiomyopathy, few studies exist in chronic nonischemic dilated cardiomyopathy (NIDCM). OBJECTIVES: The authors conducted a randomized comparison of safety and efficacy of autologous (auto) versus allogeneic (allo) bone marrow-derived hMSCs in NIDCM. METHODS: Thirty-seven patients were randomized to either allo- or auto-hMSCs in a 1:1 ratio. Patients were recruited between December 2011 and July 2015 at the University of Miami Hospital. Patients received hMSCs (100 million) by transendocardial stem cell injection in 10 left ventricular sites. Treated patients were evaluated at baseline, 30 days, and 3-, 6-, and 12-months for safety (serious adverse events [SAE]), and efficacy endpoints: ejection fraction, Minnesota Living with Heart Failure Questionnaire, 6-min walk test, major adverse cardiac events, and immune biomarkers. RESULTS: There were no 30-day treatment-emergent SAEs. Twelve-month SAE incidence was 28.2% with allo-hMSCs versus 63.5% with auto-hMSCs (p = 0.1004 for the comparison). One allo-hMSC patient developed an elevated (>80) donor-specific calculated panel reactive antibody level. The ejection fraction increased in allo-hMSC patients by 8.0 percentage points (p = 0.004) compared with 5.4 with auto-hMSCs (p = 0.116; allo vs. auto p = 0.4887). The 6-min walk test increased with allo-hMSCs by 37.0 m (p = 0.04), but not auto-hMSCs at 7.3 m (p = 0.71; auto vs. allo p = 0.0168). MLHFQ score decreased in allo-hMSC (p = 0.0022) and auto-hMSC patients (p = 0.463; auto vs. allo p = 0.172). The major adverse cardiac event rate was lower, too, in the allo group (p = 0.0186 vs. auto). Tumor necrosis factor-α decreased (p = 0.0001 for each), to a greater extent with allo-hMSCs versus auto-hMSCs at 6 months (p = 0.05). CONCLUSIONS: These findings demonstrated safety and clinically meaningful efficacy of allo-hMSC versus auto-hMSC in NIDCM patients. Pivotal trials of allo-hMSCs are warranted based on these results. (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy [PoseidonDCM]; NCT01392625).


Assuntos
Cardiomiopatia Dilatada/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Segurança , Transplante Autólogo , Transplante Homólogo , Resultado do Tratamento , Fator de Necrose Tumoral alfa
16.
J Am Coll Cardiol ; 68(22): 2454-2464, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27908351

RESUMO

BACKGROUND: Pim1 kinase plays an important role in cell division, survival, and commitment of precursor cells towards a myocardial lineage, and overexpression of Pim1 in ckit+ cardiac stem cells (CSCs) enhances their cardioreparative properties. OBJECTIVES: The authors sought to validate the effect of Pim1-modified CSCs in a translationally relevant large animal preclinical model of myocardial infarction (MI). METHODS: Human cardiac stem cells (hCSCs, n = 10), hckit+ CSCs overexpressing Pim1 (Pim1+; n = 9), or placebo (n = 10) were delivered by intramyocardial injection to immunosuppressed Yorkshire swine (n = 29) 2 weeks after MI. Cardiac magnetic resonance and pressure volume loops were obtained before and after cell administration. RESULTS: Whereas both hCSCs reduced MI size compared to placebo, Pim1+ cells produced a ∼3-fold greater decrease in scar mass at 8 weeks post-injection compared to hCSCs (-29.2 ± 2.7% vs. -8.4 ± 0.7%; p < 0.003). Pim1+ hCSCs also produced a 2-fold increase of viable mass compared to hCSCs at 8 weeks (113.7 ± 7.2% vs. 65.6 ± 6.8%; p <0.003), and a greater increase in regional contractility in both infarct and border zones (both p < 0.05). Both CSC types significantly increased ejection fraction at 4 weeks but this was only sustained in the Pim1+ group at 8 weeks compared to placebo. Both hCSC and Pim1+ hCSC treatment reduced afterload (p = 0.02 and p = 0.004, respectively). Mechanoenergetic recoupling was significantly greater in the Pim1+ hCSC group (p = 0.005). CONCLUSIONS: Pim1 overexpression enhanced the effect of intramyocardial delivery of CSCs to infarcted porcine hearts. These findings provide a rationale for genetic modification of stem cells and consequent translation to clinical trials.


Assuntos
Proteínas Fúngicas/genética , Regulação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/genética , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/citologia , Transplante de Células-Tronco/métodos , Animais , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/biossíntese , Humanos , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Suínos
17.
Am J Physiol Heart Circ Physiol ; 311(6): H1509-H1519, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27694215

RESUMO

Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis that hypoxia impairs cell proliferation, survival, and migration of human CSCs relative to physiological and room air oxygen concentrations. Human endomyocardial biopsy-derived CSCs were isolated, selected for c-Kit expression, and expanded in vitro at room air (21% O2). To assess the effect on proliferation, survival, and migration, CSCs were transferred to physiological (5%) or hypoxic (0.5%) O2 concentrations. Physiological O2 levels increased proliferation (P < 0.05) but did not affect survival of CSCs. Although similar growth rates were observed in room air and hypoxia, a significant reduction of ß-galactosidase activity (-4,203 fluorescent units, P < 0.05), p16 protein expression (0.58-fold, P < 0.001), and mitochondrial content (0.18-fold, P < 0.001) in hypoxia suggests that transition from high (21%) to low (0.5%) O2 reduces senescence and promotes quiescence. Furthermore, physiological O2 levels increased migration (P < 0.05) compared with room air and hypoxia, and treatment with mesenchymal stem cell-conditioned media rescued CSC migration under hypoxia to levels comparable to physiological O2 migration (2-fold, P < 0.05 relative to CSC media control). Our finding that physiological O2 concentration is optimal for in vitro parameters of CSC biology suggests that standard room air may diminish cell regenerative potential. This study provides novel insights into the modulatory effects of O2 concentration on CSC biology and has important implications for refining stem cell therapies.


Assuntos
Movimento Celular , Proliferação de Células , Hipóxia/metabolismo , Oxigênio/metabolismo , Células-Tronco/metabolismo , Animais , Apoptose , Western Blotting , Sobrevivência Celular , Células Cultivadas , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Hipóxia/fisiopatologia , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/fisiologia , beta-Galactosidase/metabolismo
18.
Circ Res ; 119(8): 921-30, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27481956

RESUMO

RATIONALE: Culture-expanded cells originating from cardiac tissue that express the cell surface receptor cKit are undergoing clinical testing as a cell source for heart failure and congenital heart disease. Although accumulating data support that mesenchymal stem cells (MSCs) enhance the efficacy of cardiac cKit(+) cells (CSCs), the underlying mechanism for this synergistic effect remains incompletely understood. OBJECTIVE: To test the hypothesis that MSCs stimulate endogenous CSCs to proliferate, migrate, and differentiate via the SDF1/CXCR4 and stem cell factor/cKit pathways. METHODS AND RESULTS: Using genetic lineage-tracing approaches, we show that in the postnatal murine heart, cKit(+) cells proliferate, migrate, and form cardiomyocytes, but not endothelial cells. CSCs exhibit marked chemotactic and proliferative responses when cocultured with MSCs but not with cardiac stromal cells. Antagonism of the CXCR4 pathway with AMD3100 (an SDF1/CXCR4 antagonist) inhibited MSC-induced CSC chemotaxis but stimulated CSC cardiomyogenesis (P<0.0001). Furthermore, MSCs enhanced CSC proliferation via the stem cell factor/cKit and SDF1/CXCR4 pathways (P<0.0001). CONCLUSIONS: Together these findings show that MSCs exhibit profound, yet differential, effects on CSC migration, proliferation, and differentiation and suggest a mechanism underlying the improved cardiac regeneration associated with combination therapy using CSCs and MSCs. These findings have important therapeutic implications for cell-based therapy strategies that use mixtures of CSCs and MSCs.


Assuntos
Quimiocina CXCL12/biossíntese , Células-Tronco Mesenquimais/fisiologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/biossíntese , Receptores CXCR4/biossíntese , Fator de Células-Tronco/biossíntese , Animais , Animais Recém-Nascidos , Movimento Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Humanos , Camundongos , Camundongos Transgênicos , Projetos Piloto , Transdução de Sinais/fisiologia , Suínos
19.
Physiol Rev ; 96(3): 1127-68, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27335447

RESUMO

Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease.


Assuntos
Cardiomiopatias/terapia , Terapia Baseada em Transplante de Células e Tecidos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Isquemia Miocárdica/terapia , Engenharia Tecidual/métodos , Animais , Humanos
20.
Circ Res ; 118(3): 382-7, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26846638

RESUMO

After 2 recent genetic studies in mice addressing the developmental origins and regenerative activity of cardiac cKit+ cells, 2 additional reports by Sultana et al and Liu et al provide further information on the expression of cKit in the embryonic and adult hearts. Here, we synthesize the findings from the 4 distinct cKit models to gain insights into the biology of this important cell type.


Assuntos
Diferenciação Celular , Linhagem da Célula , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Coração , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Vasos Coronários/embriologia , Genótipo , Coração/embriologia , Camundongos Transgênicos , Morfogênese , Fenótipo , Proteínas Proto-Oncogênicas c-kit/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...