Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4925, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858373

RESUMO

Terpene synthesis stands at the forefront of modern synthetic chemistry and represents the state-of-the-art in the chemist's toolbox. Notwithstanding, these endeavors are inherently tied to the current availability of natural cyclic building blocks. Addressing this limitation, the stereocontrolled cyclization of abundant unbiased linear terpenes emerges as a valuable tool, which is still difficult to achieve with chemical catalysts. In this study, we showcase the remarkable capabilities of squalene-hopene cyclases (SHCs) in the chemoenzymatic synthesis of head-to-tail-fused terpenes. By combining engineered SHCs and a practical reaction setup, we generate ten chiral scaffolds with >99% ee and de, at up to decagram scale. Our mechanistic insights suggest how cyclodextrin encapsulation of terpenes may influence the performance of the membrane-bound enzyme. Moreover, we transform the chiral templates to valuable (mero)-terpenes using interdisciplinary synthetic methods, including a catalytic ring-contraction of enol-ethers facilitated by cooperative iodine/lipase catalysis.


Assuntos
Biocatálise , Terpenos , Ciclização , Terpenos/metabolismo , Terpenos/química , Estereoisomerismo , Transferases Intramoleculares/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/química , Ciclodextrinas/química , Ciclodextrinas/metabolismo
2.
Angew Chem Int Ed Engl ; 63(12): e202318913, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38270537

RESUMO

The interconversion of monoterpenes is facilitated by a complex network of carbocation rearrangement pathways. Controlling these isomerization pathways is challenging when using common Brønsted and Lewis acid catalysts, which often produce product mixtures that are difficult to separate. In contrast, natural monoterpene cyclases exhibit high control over the carbocation rearrangement reactions but are reliant on phosphorylated substrates. In this study, we present engineered squalene-hopene cyclases from Alicyclobacillus acidocaldarius (AacSHC) that catalyze the challenging isomerization of monoterpenes with unprecedented precision. Starting from a promiscuous isomerization of (+)-ß-pinene, we first demonstrate noticeable shifts in the product distribution solely by introducing single point mutations. Furthermore, we showcase the tuneable cation steering by enhancing (+)-borneol selectivity from 1 % to >90 % (>99 % de) aided by iterative saturation mutagenesis. Our combined experimental and computational data suggest that the reorganization of key aromatic residues leads to the restructuring of the water network that facilitates the selective termination of the secondary isobornyl cation. This work expands our mechanistic understanding of carbocation rearrangements and sets the stage for target-oriented skeletal reorganization of broadly abundant terpenes.


Assuntos
Monoterpenos , Esqualeno , Triterpenos , Monoterpenos/química , Isomerismo , Cátions
3.
ACS Chem Biol ; 18(12): 2450-2456, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948749

RESUMO

Rieske oxygenases (ROs) from natural product biosynthetic pathways are a poorly studied group of enzymes with significant potential as oxidative functionalization biocatalysts. A study on the ROs JerL, JerP, and AmbP from the biosynthetic pathways of jerangolid A and ambruticin VS-3 is described. Their activity was successfully reconstituted using whole-cell bioconversion systems coexpressing the ROs and their respective natural flavin-dependent reductase (FDR) partners. Feeding authentic biosynthetic intermediates and synthetic surrogates to these strains confirmed the involvement of the ROs in hydroxymethylpyrone and dihydropyran formation and revealed crucial information about the RO's substrate specificity. The pronounced dependence of JerL and JerP on the presence of a methylenolether allowed the precise temporal assignment of RO catalysis to the ultimate steps of jerangolid biosynthesis. JerP and AmbP stand out among the biosynthetic ROs studied so far for their ability to catalyze clean tetrahydropyran desaturation without further functionalizing the formed electron-rich double bonds. This work highlights the remarkable ability of ROs to highly selectively oxidize complex molecular scaffolds.


Assuntos
Oxigenases , Policetídeos , Oxigenases/metabolismo , Antifúngicos , Espécies Reativas de Oxigênio , Catálise , Estresse Oxidativo
4.
J Biotechnol ; 366: 19-24, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870480

RESUMO

Glycerol dehydrogenase (GldA) from Escherichia coli BW25113, naturally catalyzes the oxidation of glycerol to dihydroxyacetone. It is known that GldA exhibits promiscuity towards short-chain C2-C4 alcohols. However, there are no reports regarding the substrate scope of GldA towards larger substrates. Herein we demonstrate that GldA can accept bulkier C6-C8 alcohols than previously anticipated. Overexpression of the gldA gene in the knockout background, E. coli BW25113 ΔgldA, was strikingly effective converting 2 mM of the compounds: cis-dihydrocatetechol, cis-(1 S,2 R)- 3-methylcyclohexa-3,5-diene-1,2-diol and cis-(1 S,2 R)- 3-ethylcyclohexa-3,5-diene-1,2-diol, into 2.04 ± 0.21 mM of catechol, 0.62 ± 0.11 mM 3-methylcatechol, and 0.16 ± 0.02 mM 3-ethylcatechol, respectively. In-silico studies on the active site of GldA enlightened the decrease in product formation as the steric substrate demand increased. These results are of high interests for E. coli-based cell factories expressing Rieske non-heme iron dioxygenases, producing cis-dihydrocatechols, since such sough-after valuable products can be immediately degraded by GldA, substantially hampering the expected performance of the recombinant platform.


Assuntos
Dioxigenases , Desidrogenase do Álcool de Açúcar , Escherichia coli/genética , Escherichia coli/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Dioxigenases/metabolismo , Oxirredução , Glicerol/metabolismo
5.
Angew Chem Int Ed Engl ; 62(22): e202301607, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36939150

RESUMO

Terpene cyclases offer enormous synthetic potential, given their unique ability to forge complex hydrocarbon scaffolds from achiral precursors within a single cationic rearrangement cascade. Harnessing their synthetic power, however, has proved to be challenging owing to their generally low catalytic performance. In this study, we unveiled the catalytic potential of the squalene-hopene cyclase (SHC) by harnessing its structure and dynamics. First, we synergistically tailored the active site and entrance tunnel of the enzyme to generate a 397-fold improved (-)-ambroxide synthase. Our computational investigations explain how the introduced mutations work in concert to improve substrate acquisition, flow, and chaperoning. Kinetics, however, showed terpene-induced inactivation of the membrane-bound SHC to be the major turnover limitation in vivo. Merging this insight with the improved and stereoselective catalysis of the enzyme, we applied a feeding strategy to exceed 105 total turnovers. We believe that our results may bridge the gap for broader application of SHCs in synthetic chemistry.


Assuntos
Transferases Intramoleculares , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Terpenos , Domínio Catalítico , Catálise , Esqualeno , Ciclização
6.
Angew Chem Int Ed Engl ; 62(26): e202301601, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-36997338

RESUMO

Terpenoids are built from isoprene building blocks and have numerous biological functions. Selective late-stage modification of their carbon scaffold has the potential to optimize or transform their biological activities. However, the synthesis of terpenoids with a non-natural carbon scaffold is often a challenging endeavor because of the complexity of these molecules. Herein we report the identification and engineering of (S)-adenosyl-l-methionine-dependent sterol methyltransferases for selective C-methylation of linear terpenoids. The engineered enzyme catalyzes selective methylation of unactivated alkenes in mono-, sesqui- and diterpenoids to produce C11 , C16 and C21 derivatives. Preparative conversion and product isolation reveals that this biocatalyst performs C-C bond formation with high chemo- and regioselectivity. The alkene methylation most likely proceeds via a carbocation intermediate and regioselective deprotonation. This method opens new avenues for modifying the carbon scaffold of alkenes in general and terpenoids in particular.


Assuntos
Metiltransferases , Terpenos , Metiltransferases/metabolismo , Metilação , Alcenos , Carbono
7.
Anal Chim Acta ; 1239: 340680, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628758

RESUMO

Neonicotinoids and neonicotinoid-like compounds (NNIs) are frequently used insecticides worldwide and exposure scenarios can vary widely between countries and continents. We have developed a specific and robust analytical method based on liquid chromatography-electrospray tandem mass spectrometry coupled to online-SPE (online-SPE-LC-ESI-MS-MS) to analyze the seven most important NNIs from a global perspective together with nine of their key metabolites in human urine. The method also includes the neonicotinoid-like flupyradifurone (FLUP), an important future substitute for classical neonicotinoids, and two of its major human metabolites, 5-hydroxy- and N-desfluoroethyl-FLUP. Validation of the method was carried out using pooled urine samples from low-dose human metabolism studies and spiked urine samples with a wide range of creatinine concentrations. Depending on the analyte, the limits of quantitation were between 0.06 and 2.1 µg L-1, the inter-day and intra-day imprecisions ≤6%, and the mean relative recoveries between 89% and 112%. The method enabled us to successfully quantify NNIs and their metabolites at current environmental exposures in 34 individuals of the German general population and 43 pregnant women from Brazil with no known occupational exposures to NNIs.


Assuntos
Inseticidas , Espectrometria de Massas em Tandem , Humanos , Feminino , Gravidez , Neonicotinoides/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Inseticidas/análise , Cromatografia Líquida
8.
Enzyme Microb Technol ; 163: 110164, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36455467

RESUMO

The development of biorefinery approaches is of great relevance for the sustainable production of valuable compounds. In accordance with circular economy principles, waste cooking oils (WCOs) are renewable resources and biorefinery feedstocks, which contribute to a reduced impact on the environment. Frequently, this waste is wrongly disposed of into municipal sewage systems, thereby creating problems for the environment and increasing treatment costs in wastewater treatment plants. In this study, regenerated WCOs, which were intended for the production of biofuels, were transformed through a chemo-enzymatic approach to produce hydroxy fatty acids, which were further used in polycondensation reaction for polyester production. Escherichia coli whole cell biocatalyst containing the recombinantly produced Elizabethkingia meningoseptica Oleate hydratase (Em_OhyA) was used for the biocatalytic hydration of crude WCOs-derived unsaturated free fatty acids for the production of hydroxy fatty acids. Further hydrogenation reaction and methylation of the crude mixture allowed the production of (R)- 10-hydroxystearic acid methyl ester that was further purified with a high purity (> 90%), at gram scale. The purified (R)- 10-hydroxystearic acid methyl ester was polymerized through a polycondensation reaction to produce the corresponding polyester. This work highlights the potential of waste products to obtain bio-based hydroxy fatty acids and polyesters through a biorefinery approach.


Assuntos
Ácidos Graxos , Poliésteres , Óleos , Biocombustíveis , Ácidos Graxos Insaturados , Culinária , Ésteres
9.
Nat Commun ; 13(1): 6269, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271006

RESUMO

Squalene-hopene cyclases are a highly valuable and attractive class of membrane-bound enzymes as sustainable biotechnological tools to produce aromas and bioactive compounds at industrial scale. However, their application as whole-cell biocatalysts suffer from the outer cell membrane acting as a diffusion barrier for the highly hydrophobic substrate/product, while the use of purified enzymes leads to dramatic loss of stability. Here we present an unexplored strategy for biocatalysis: the application of squalene-hopene-cyclase spheroplasts. By removing the outer cell membrane, we produce stable and substrate-accessible biocatalysts. These spheroplasts exhibit up to 100-fold higher activity than their whole-cell counterparts for the biotransformations of squalene, geranyl acetone, farnesol, and farnesyl acetone. Their catalytic ability is also higher than the purified enzyme for all high molecular weight terpenes. In addition, we introduce a concept for the carrier-free immobilization of spheroplasts via crosslinking, crosslinked spheroplasts. The crosslinked spheroplasts maintain the same catalytic activity of the spheroplasts, offering additional advantages such as recycling and reuse. These timely solutions contribute not only to harness the catalytic potential of the squalene-hopene cyclases, but also to make biocatalytic processes even greener and more cost-efficient.


Assuntos
Transferases Intramoleculares , Esqualeno , Esferoplastos , Esqualeno/química , Farneseno Álcool , Acetona , Transferases Intramoleculares/metabolismo , Terpenos/metabolismo
10.
MethodsX ; 8: 101323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430233

RESUMO

Rieske non-heme iron dioxygenases are a class of intriguing enzymes covering a broad reaction and substrate spectrum and have been studied extensively in the last decades. In nature, these biocatalysts are essential for the production of cis-dihydroxylated metabolites, as a first step during the degradation of aromatic compounds in microorganisms. The enzymes are able to produce relevant amounts of compounds in short reaction times, but the effort for constant cultivation of recombinant cells and production of cell mass for biotransformations is high. To overcome the steady production process, our task was to find a way to make the biocatalysts durable and storable. In this way, laboratories lacking equipment for microbiology, e.g. chemistry laboratories, can be supplied with the enzymes to open up new possibilities in the production of molecules. We present a quick and efficient method that uses lyophilization to freeze-dry recombinant whole-cells that harbor the enzyme of interest. By washing the cells with a cryoprotectant before lyophilization, we could conserve the enzyme activity to the level of freshly harvested cells. Moreover, this simple to apply method enables subsequent steps like storage of the cell powder for transportation and on demand use in biotransformations. The method was established with the cumene dioxygenase (CDO) of Pseudomonas fluorescens IP01 and its variant CDO M232A expressed in E. coli JM109 (DE3) cells, employing R-limonene and naphthalene, respectively, as substrates in biotransformations. The method could be successfully applied in the analytical and semi-preparative reaction scale.•Preservation of biocatalysts in recombinant whole-cells.•Ready-to-use enzymatic reaction.•Semi-preparative biotransformation with lyophilized whole-cells.

11.
MethodsX ; 8: 101455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430336

RESUMO

In an attempt to establish a biosynthetic route towards isobutene, we faced the problem that the first intermediate isobutyl-monophosphate was not commercially available. In order to overcome this limitation we searched in the literature for protocols reporting the synthesis of phosphate monoesters from alcohols. Based on the suitability of the preceding developments for our purposes, we established a customized method for the fast, easy and affordable generation of the pursued molecule. Herein, a prompt and straightforward method for isobutyl-monophosphate (ammonium salt) is provided.•This is a customized method for the production of isobutyl-monophosphate (ammonium salt), using isobutanol as starting compound•Synthesis takes place in a one-pot fashion, under mild reaction conditions, in 2 h•The established sequential strategy requires 8 h at the most, including synthesis and purification steps to obtain the isolated product.

12.
MethodsX ; 8: 101285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434805

RESUMO

Phosphorous-NMR is scarcely employed to evaluate enzyme kinetics of kinase driven monophosphorylations, despite of being a powerful and reliable tool to undoubtedly detect the actual phosphoryl transfer to the targeted substrate. Another advantage is that an external supplementation source of the NMR active isotope is not required, since 31P is highly abundant in nature. Glycerol kinase (GlpK) from E. coli is an exemplary ATP-dependent kinase/phosphotransferase model to illustrate the value and usefulness of a 31P-NMR-based approach to assess the enzymatically driven monophosphorylation of glycerol. Moreover, the described approach offers an alternative to the indirect coupled glycerol kinase enzyme assays. Herein, we provided a real time 31P-NMR-based method customized for the direct assessment of the glycerol kinase enzyme activity.•Real-time detection for phosphoryl group dynamics in the GlpK driven reaction•Direct assessment of product formation (glycerol-monophosphate)•Parallel determination of cosubstrate (ATP) consumption and coproduct (ADP) generation•Method validation was performed via 31P-NMR for each phosphorylated molecule involved in the reaction in order to assist in the molecular assignments.

13.
Angew Chem Int Ed Engl ; 60(24): 13251-13256, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33769659

RESUMO

Cascade reactions appeared as a cutting-edge strategy to streamline the assembly of complex structural scaffolds from naturally available precursors in an atom-, as well as time, labor- and cost-efficient way. We herein report a strategy to control cationic cyclization cascades by exploiting the ability of anchoring dynamic substrates in the active site of terpene cyclases via designed hydrogen bonding. Thereby, it is possible to induce "directed" cyclizations in contrast to established "non-stop" cyclizations (99:1) and predestinate cascade termination at otherwise catalytically barely accessible intermediates. As a result, we are able to provide efficient access to naturally widely occurring apocarotenoids, value-added flavors and fragrances in gram-scale by replacing multi-stage synthetic routes to a single step with unprecedented selectivity (>99.5 % ee) and high yields (up to 89 %).


Assuntos
Transferases Intramoleculares/metabolismo , Terpenos/química , Alicyclobacillus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Ciclização , Transferases Intramoleculares/genética , Mutagênese Sítio-Dirigida , Estereoisomerismo , Especificidade por Substrato , Terpenos/metabolismo
14.
Nat Commun ; 12(1): 1095, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597523

RESUMO

Active-site loops play essential roles in various catalytically important enzyme properties like activity, selectivity, and substrate scope. However, their high flexibility and diversity makes them challenging to incorporate into rational enzyme engineering strategies. Here, we report the engineering of hot-spots in loops of the cumene dioxygenase from Pseudomonas fluorescens IP01 with high impact on activity, regio- and enantioselectivity. Libraries based on alanine scan, sequence alignments, and deletions along with a novel insertion approach result in up to 16-fold increases in activity and the formation of novel products and enantiomers. CAVER analysis suggests possible increases in the active pocket volume and formation of new active-site tunnels, suggesting additional degrees of freedom of the substrate in the pocket. The combination of identified hot-spots with the Linker In Loop Insertion approach proves to be a valuable addition to future loop engineering approaches for enhanced biocatalysts.


Assuntos
Proteínas de Bactérias/metabolismo , Domínio Catalítico , Dioxigenases/metabolismo , Engenharia de Proteínas/métodos , Pseudomonas fluorescens/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Biocatálise , Dioxigenases/química , Dioxigenases/genética , Modelos Moleculares , Conformação Proteica , Pseudomonas fluorescens/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
Appl Microbiol Biotechnol ; 105(5): 2003-2015, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33582834

RESUMO

Phenylobacterium immobile strain E is a soil bacterium with a striking metabolism relying on xenobiotics, such as the herbicide pyrazon, as sole carbon source instead of more bioavailable molecules. Pyrazon is a heterocyclic aromatic compound of environmental concern and its biodegradation pathway has only been reported in P. immobile. The multicomponent pyrazon oxygenase (PPO), a Rieske non-heme iron oxygenase, incorporates molecular oxygen at the 2,3 position of the pyrazon phenyl moiety as first step of degradation, generating a cis-dihydrodiendiol. The aim of this work was to identify the genes encoding for each one of the PPO components and enable their functional assembly in Escherichia coli. P. immobile strain E genome sequencing revealed genes encoding for RO components, such as ferredoxin-, reductase-, α- and ß-subunits of an oxygenase. Though, P. immobile E displays three prominent differences with respect to the ROs currently characterized: (1) an operon-like organization for PPO is absent, (2) all the elements are randomly scattered in its DNA, (3) not only one, but 19 different α-subunits are encoded in its genome. Herein, we report the identification of the PPO components involved in pyrazon cis-dihydroxylation in P. immobile, its appropriate assembly, and its functional reconstitution in E. coli. Our results contributes with the essential missing pieces to complete the overall elucidation of the PPO from P. immobile. KEY POINTS: • Phenylobacterium immobile E DSM 1986 harbors the only described pyrazon oxygenase (PPO). • We elucidated the genes encoding for all PPO components. • Heterologous expression of PPO enabled pyrazon dihydroxylation in E. coli JW5510.


Assuntos
Escherichia coli , Oxigenases , Caulobacteraceae , Escherichia coli/genética , Ferro , Oxigenases/genética , Piridazinas
17.
J Biotechnol ; 326: 37-39, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33359214

RESUMO

cis-1,2-Dihydro-1,2-naphthalenediol (DHND) is a valuable molecule employed for the pharmaceutical synthesis of bioactive compounds, such as bicyclic conduritol analogues. Enantiopure (+)-(1R,2S)-DHND (>98 % ee) is easily biosynthesized through the dearomatizing dihydroxylation of naphthalene, catalyzed by toluene dioxygenase (TDO) from Pseudomonas putida F1. However, the opposite enantiomer (-)-(1S,2R)-DHND could not be directly accessed, neither by chemical synthesis nor via biocatalytic approaches. Herein, we report a one-step biosynthesis of the opposite enantiomer (-)-(1S,2R)-DHND in a recombinant TDO E. coli BW25113 platform. We based on a semi-rational approach to generate a set of TDO variants, targeting exclusively the hotspot position F366, in order to enable an enantiomeric switch in the generated product. Eight out of nine single point variants were active and showed not only an alteration in enantioselectivity, but also generated an enantiomeric excess of the pursued product. Variant TDOF366V outperformed above the rest of the set, enabling the synthesis of (-)-(1S,2R)-DHND not only with an excellent enantiomeric excess of 90 %, but also with an advantageous product formation. A comparative semi-preparative biosynthesis yielded, 287 mg of (+)-(1R,2S)-DHND (>98 % ee) and 101 mg of (-)-(1S,2R)-DHND (90 % ee), when performed in a total volume of 100 mL with TDO wild-type and TDOF366V resting cells, respectively.


Assuntos
Escherichia coli , Pseudomonas putida , Escherichia coli/genética , Naftóis , Oxigenases , Pseudomonas putida/genética
18.
J Biotechnol ; 325: 380-388, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32946884

RESUMO

The compound cis-1,2-dihydrocatechol (DHC) is highly valuable since it finds wide application in the production of fine chemicals and bioactive compounds with medical relevance. The biotechnological process to generate DHC involves a dearomatizing dihydroxylation reaction catalyzed by toluene dioxygenase (TDO) from P. putida F1, employing benzene as substrate. We aimed to enhance the biotechnological E. coli BW25113 platform for DHC production by identifying the key operational parameters positively influencing the final isolated yield. Thereby, we observed an unreported downstream reaction, generating catechol from DHC, affecting, in a negative manner, the final titer for the product. Expression temperature for the TDO-system showed to have the highest influence in terms of final isolated yield. A KEIO-collection-based screening approach highlighted glycerol dehydrogenase (GldA) as the main responsible enzyme for the undesired reaction. We transferred the TDO-system to E. coli BW25113 ΔgldA and applied the enhanced operational set-up on it. This enhanced platform enabled the production of 1.41 g L-1 DHC in isolated yield, which represents a two-fold increase compared with the starting working conditions. To our knowledge, this is the highest DHC production accomplished in recombinant E. coli at semi-preparative scale, providing a robust and accessible biotechnological platform for DHC synthesis.


Assuntos
Pseudomonas putida , Catecóis , Escherichia coli/genética , Oxigenases , Desidrogenase do Álcool de Açúcar
19.
Angew Chem Int Ed Engl ; 60(10): 5554-5560, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300646

RESUMO

Selective alkylation of pyrazoles could solve a challenge in chemistry and streamline synthesis of important molecules. Here we report catalyst-controlled pyrazole alkylation by a cyclic two-enzyme cascade. In this enzymatic system, a promiscuous enzyme uses haloalkanes as precursors to generate non-natural analogs of the common cosubstrate S-adenosyl-l-methionine. A second engineered enzyme transfers the alkyl group in highly selective C-N bond formations to the pyrazole substrate. The cosubstrate is recycled and only used in catalytic amounts. Key is a computational enzyme-library design tool that converted a promiscuous methyltransferase into a small enzyme family of pyrazole-alkylating enzymes in one round of mutagenesis and screening. With this enzymatic system, pyrazole alkylation (methylation, ethylation, propylation) was achieved with unprecedented regioselectivity (>99 %), regiodivergence, and in a first example on preparative scale.


Assuntos
Alquil e Aril Transferases/química , Hidrocarbonetos Halogenados/síntese química , Metiltransferases/química , Pirazóis/síntese química , Alquil e Aril Transferases/genética , Alquilação , Aspergillus/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Metiltransferases/genética , Estudo de Prova de Conceito , Engenharia de Proteínas , Especificidade por Substrato
20.
MethodsX ; 7: 101143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33299804

RESUMO

cis-Dihydrodiendiols are valuable compounds, finding multiple application as chiral synthons in organic chemistry. The biotechnological route for the generation of cis-dihydrodiendiols involves the dihydroxylation of aromatic compounds, catalyzed by Rieske non-heme iron dioxygenases. To date, numerous examples of recombinant E. coli, harboring such dioxygenases, can be found in the literature. Nevertheless, there is only a minor number of publications, addressing the E. coli catalyzed degradation of cis-dihydrodiendiols into catechols via dehydrogenases. Identification and elimination of such dehydrogenase catalyzed degradation is key for the establishment of enhanced recombinant E. coli platforms pursuing the production of cis-dihydrodiendiols. Here, we provide a fast and easy strategy for the identification of promiscuous alcohol dehydrogenases in E. coli BW25113, catalyzing the degradation of cis-dihydrodiendiols into catechols. This approach is based on the screening of dehydrogenase deficient KEIO strains, regarding their incapability of degrading a cis-dihydrodiendiol of choice.•Novel screening strategy for E. coli BW25113 dehydrogenase knock-outs, incapable of degrading cis-dihydrodiendiols was validated for cis-1,2-dihydrocatechol as substrate•Corresponding knock-outs can be used for recombinant production of cis-dihydrodiendiols•Simple analysis based on liquid chromatography with diode array detector (HPLC-DAD).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...