Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 200(6): 807-20, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23509070

RESUMO

Mitochondrial complex I (CI) is an essential component in energy production through oxidative phosphorylation. Most CI subunits are encoded by nuclear genes, translated in the cytoplasm, and imported into mitochondria. Upon entry, they are embedded into the mitochondrial inner membrane. How these membrane-associated proteins cope with the hydrophilic cytoplasmic environment before import is unknown. In a forward genetic screen to identify genes that cause neurodegeneration, we identified sicily, the Drosophila melanogaster homologue of human C8ORF38, the loss of which causes Leigh syndrome. We show that in the cytoplasm, Sicily preprotein interacts with cytosolic Hsp90 to chaperone the CI subunit, ND42, before mitochondrial import. Loss of Sicily leads to loss of CI proteins and preproteins in both mitochondria and cytoplasm, respectively, and causes a CI deficiency and neurodegeneration. Our data indicate that cytosolic chaperones are required for the subcellular transport of ND42.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Complexo I de Transporte de Elétrons/genética , Deleção de Genes , Proteínas de Choque Térmico HSP90/genética , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Transporte Proteico/fisiologia
2.
PLoS Biol ; 10(3): e1001288, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22448145

RESUMO

An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS), and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL) patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.


Assuntos
Ataxia/genética , Proteínas de Drosophila/genética , Drosophila/fisiologia , Metionina tRNA Ligase/genética , Mitocôndrias/enzimologia , Doenças Neurodegenerativas/genética , Adolescente , Adulto , Animais , Ataxia/metabolismo , Proliferação de Células , Criança , Pré-Escolar , Drosophila/enzimologia , Drosophila/genética , Proteínas de Drosophila/metabolismo , Transporte de Elétrons , Eletrorretinografia/métodos , Feminino , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Longevidade , Masculino , Metionina tRNA Ligase/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculos/metabolismo , Músculos/fisiopatologia , Mutação , Doenças Neurodegenerativas/metabolismo , Fosforilação Oxidativa , Linhagem , Fenótipo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Resposta a Proteínas não Dobradas , Adulto Jovem
3.
Dev Cell ; 22(2): 348-62, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22264801

RESUMO

VIDEO ABSTRACT: The VAPB/ALS8 major sperm protein domain (vMSP) is implicated in amyotrophic lateral sclerosis and spinal muscular atrophy, yet its function in the nervous system is not well understood. In Caenorhabditis elegans and Drosophila, the vMSP is cleaved from its transmembrane anchor and secreted in a cell type-specific fashion. We show that vMSPs secreted by neurons act on Lar-like protein-tyrosine phosphatase and Roundabout growth cone guidance receptors expressed in striated muscle. This signaling pathway promotes Arp2/3-dependent actin remodeling and mitochondrial localization to actin-rich muscle I-bands. C. elegans VAPB mutants have mitochondrial localization, morphology, mobility, and fission/fusion defects that are suppressed by Lar-like receptor or Arp2/3 inactivation. Hence, growth cone guidance receptor pathways that remodel the actin cytoskeleton have unanticipated effects on mitochondrial dynamics. We propose that neurons secrete vMSPs to promote striated muscle energy production and metabolism, in part through the regulation of mitochondrial localization and function.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cones de Crescimento/metabolismo , Proteínas de Helminto/metabolismo , Mitocôndrias/metabolismo , Músculo Estriado/metabolismo , Neurônios/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Fluorescência , Proteínas de Helminto/genética , Mitocôndrias/patologia , Músculo Estriado/citologia , Neurônios/citologia , Estrutura Terciária de Proteína , Transdução de Sinais , Transgenes/fisiologia
4.
Neuron ; 71(3): 447-59, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21835342

RESUMO

Neurons establish specific synaptic connections with their targets, a process that is highly regulated. Numerous cell adhesion molecules have been implicated in target recognition, but how these proteins are precisely trafficked and targeted is poorly understood. To identify components that affect synaptic specificity, we carried out a forward genetic screen in the Drosophila eye. We identified a gene, named ric1 homologue (rich), whose loss leads to synaptic specificity defects. Loss of rich leads to reduction of N-Cadherin in the photoreceptor cell synapses but not of other proteins implicated in target recognition, including Sec15, DLAR, Jelly belly, and PTP69D. The Rich protein binds to Rab6, and Rab6 mutants display very similar phenotypes as the rich mutants. The active form of Rab6 strongly suppresses the rich synaptic specificity defect, indicating that Rab6 is regulated by Rich. We propose that Rich activates Rab6 to regulate N-Cadherin trafficking and affects synaptic specificity.


Assuntos
Caderinas/metabolismo , Proteínas de Drosophila/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas ras/genética , Animais , Drosophila , Proteínas de Drosophila/genética , Mutação , Células Fotorreceptoras de Invertebrados/metabolismo , Sinapses/genética , Sinapses/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas ras/metabolismo
5.
Cell ; 138(5): 947-60, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19737521

RESUMO

Synaptic vesicle (SV) exo- and endocytosis are tightly coupled to sustain neurotransmission in presynaptic terminals, and both are regulated by Ca(2+). Ca(2+) influx triggered by voltage-gated Ca(2+) channels is necessary for SV fusion. However, extracellular Ca(2+) has also been shown to be required for endocytosis. The intracellular Ca(2+) levels (<1 microM) that trigger endocytosis are typically much lower than those (>10 microM) needed to induce exocytosis, and endocytosis is inhibited when the Ca(2+) level exceeds 1 microM. Here, we identify and characterize a transmembrane protein associated with SVs that, upon SV fusion, localizes at periactive zones. Loss of Flower results in impaired intracellular resting Ca(2+) levels and impaired endocytosis. Flower multimerizes and is able to form a channel to control Ca(2+) influx. We propose that Flower functions as a Ca(2+) channel to regulate synaptic endocytosis and hence couples exo- with endocytosis.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endocitose , Exocitose , Vesículas Sinápticas/metabolismo , Animais , Canais de Cálcio/análise , Proteínas de Drosophila/análise , Drosophila melanogaster/citologia , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Vesículas Sinápticas/química
6.
Neuron ; 63(2): 203-15, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19640479

RESUMO

Synaptic vesicle endocytosis is critical for maintaining synaptic communication during intense stimulation. Here we describe Tweek, a conserved protein that is required for synaptic vesicle recycling. tweek mutants show reduced FM1-43 uptake, cannot maintain release during intense stimulation, and harbor larger than normal synaptic vesicles, implicating it in vesicle recycling at the synapse. Interestingly, the levels of a fluorescent PI(4,5)P(2) reporter are reduced at tweek mutant synapses, and the probe is aberrantly localized during stimulation. In addition, various endocytic adaptors known to bind PI(4,5)P(2) are mislocalized and the defects in FM1-43 dye uptake and adaptor localization are partially suppressed by removing one copy of the phosphoinositide phosphatase synaptojanin, suggesting a role for Tweek in maintaining proper phosphoinositide levels at synapses. Our data implicate Tweek in regulating synaptic vesicle recycling via an action mediated at least in part by the regulation of PI(4,5)P(2) levels or availability at the synapse.


Assuntos
Proteínas de Drosophila/fisiologia , Endocitose/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Western Blotting , DNA Complementar , Dípteros , Endocitose/genética , Anormalidades do Olho/genética , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Neurônios/ultraestrutura , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinapses/genética , Sinapses/ultraestrutura , Transmissão Sináptica/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestrutura
7.
Nat Cell Biol ; 11(7): 815-24, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19543274

RESUMO

Cell fate decisions mediated by the Notch signalling pathway require direct cell-cell contact between adjacent cells. In Drosophila melanogaster, an external sensory organ (ESO) develops from a single sensory organ precursor (SOP) and its fate specification is governed by differential Notch activation. Here we show that mutations in actin-related protein-3 (Arp3) compromise Notch signalling, leading to a fate transformation of the ESO. Our data reveal that during ESO fate specification, most endocytosed vesicles containing the ligand Delta traffic to a prominent apical actin-rich structure (ARS) formed in the SOP daughter cells. Using immunohistochemistry and transmission electron microscopy (TEM) analyses, we show that the ARS contains numerous microvilli on the apical surface of SOP progeny. In Arp2/3 and WASp mutants, the surface area of the ARS is substantially reduced and there are significantly fewer microvilli. More importantly, trafficking of Delta-positive vesicles from the basal area to the apical portion of the ARS is severely compromised. Our data indicate that WASp-dependent Arp2/3 actin polymerization is crucial for apical presentation of Delta, providing a mechanistic link between actin polymerization and Notch signalling.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Microvilosidades/metabolismo , Órgãos dos Sentidos/embriologia , Proteína da Síndrome de Wiskott-Aldrich/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Transporte Biológico/genética , Transporte Biológico/fisiologia , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Endocitose/genética , Endocitose/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Microvilosidades/ultraestrutura , Órgãos dos Sentidos/metabolismo , Órgãos dos Sentidos/ultraestrutura , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
8.
J Neurosci ; 29(17): 5628-39, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19403829

RESUMO

In an unbiased genetic screen designed to isolate mutations that affect synaptic transmission, we have isolated homozygous lethal mutations in Drosophila importin 13 (imp13). Imp13 is expressed in and around nuclei of both neurons and muscles. At the larval neuromuscular junction (NMJ), imp13 affects muscle growth and formation of the subsynaptic reticulum without influencing any presynaptic structural features. In the absence of imp13, the probability of release of neurotransmitter and quantal content is increased, yet the abundance of the postsynaptic receptors and the amplitude of miniature excitatory junctional potentials are not affected. Interestingly, imp13 is required in the muscles to control presynaptic release. Thus, imp13 is a novel factor that affects neurotransmitter release at the fly NMJ. Its role in the context of synaptic homeostasis is discussed.


Assuntos
Proteínas de Drosophila/fisiologia , Carioferinas/fisiologia , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Carioferinas/genética , Larva/genética , Larva/fisiologia , Mutação , Junção Neuromuscular/genética , Junção Neuromuscular/ultraestrutura , Neurotransmissores/genética
9.
Cell Metab ; 9(1): 77-87, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19117548

RESUMO

Adipose tissue development and function play a central role in the pathogenesis and pathophysiology of metabolic syndromes. Here, we show that chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) plays a pivotal role in adipogenesis and energy homeostasis. COUP-TFII is expressed in the early stages of white adipocyte development. COUP-TFII heterozygous mice (COUP-TFII(+/-)) have much less white adipose tissue (WAT) than wild-type mice (COUP-TFII(+/+)). COUP-TFII(+/-) mice display a decreased expression of key regulators for WAT development. Knockdown COUP-TFII in 3T3-L1 cells resulted in an increased expression of Wnt10b, while chromatin immunoprecipitation analysis revealed that Wnt10b is a direct target of COUP-TFII. Moreover, COUP-TFII(+/-) mice have increased mitochondrial biogenesis in WAT, and COUP-TFII(+/-) mice have improved glucose homeostasis and increased energy expenditure. Thus, COUP-TFII regulates adipogenesis by regulating the key molecules in adipocyte development and can serve as a target for regulating energy metabolism.


Assuntos
Adipogenia , Fator II de Transcrição COUP/metabolismo , Metabolismo Energético , Glucose/metabolismo , Células 3T3-L1 , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular , Galinhas , Feminino , Técnicas de Silenciamento de Genes , Heterozigoto , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/prevenção & controle , Fatores de Tempo , Proteínas Wnt/metabolismo
10.
Cell ; 133(6): 963-77, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18555774

RESUMO

VAP proteins (human VAPB/ALS8, Drosophila VAP33, and C. elegans VPR-1) are homologous proteins with an amino-terminal major sperm protein (MSP) domain and a transmembrane domain. The MSP domain is named for its similarity to the C. elegans MSP protein, a sperm-derived hormone that binds to the Eph receptor and induces oocyte maturation. A point mutation (P56S) in the MSP domain of human VAPB is associated with Amyotrophic lateral sclerosis (ALS), but the mechanisms underlying the pathogenesis are poorly understood. Here we show that the MSP domains of VAP proteins are cleaved and secreted ligands for Eph receptors. The P58S mutation in VAP33 leads to a failure to secrete the MSP domain as well as ubiquitination, accumulation of inclusions in the endoplasmic reticulum, and an unfolded protein response. We propose that VAP MSP domains are secreted and act as diffusible hormones for Eph receptors. This work provides insight into mechanisms that may impact the pathogenesis of ALS.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Receptores da Família Eph/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dobramento de Proteína , Estrutura Terciária de Proteína , Ubiquitinação , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
11.
Nature ; 452(7189): 887-91, 2008 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-18344983

RESUMO

Neurodegeneration can be triggered by genetic or environmental factors. Although the precise cause is often unknown, many neurodegenerative diseases share common features such as protein aggregation and age dependence. Recent studies in Drosophila have uncovered protective effects of NAD synthase nicotinamide mononucleotide adenylyltransferase (NMNAT) against activity-induced neurodegeneration and injury-induced axonal degeneration. Here we show that NMNAT overexpression can also protect against spinocerebellar ataxia 1 (SCA1)-induced neurodegeneration, suggesting a general neuroprotective function of NMNAT. It protects against neurodegeneration partly through a proteasome-mediated pathway in a manner similar to heat-shock protein 70 (Hsp70). NMNAT displays chaperone function both in biochemical assays and cultured cells, and it shares significant structural similarity with known chaperones. Furthermore, it is upregulated in the brain upon overexpression of poly-glutamine expanded protein and recruited with the chaperone Hsp70 into protein aggregates. Our results implicate NMNAT as a stress-response protein that acts as a chaperone for neuronal maintenance and protection. Our studies provide an entry point for understanding how normal neurons maintain activity, and offer clues for the common mechanisms underlying different neurodegenerative conditions.


Assuntos
Amida Sintases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Chaperonas Moleculares/metabolismo , Degeneração Neural , Doenças Neurodegenerativas/prevenção & controle , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Amida Sintases/genética , Animais , Ataxina-1 , Ataxinas , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Chaperonas Moleculares/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/toxicidade , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/toxicidade , Ataxias Espinocerebelares/enzimologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/prevenção & controle
12.
J Cell Biol ; 179(7): 1481-96, 2007 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18158335

RESUMO

Posttranslational modification through palmitoylation regulates protein localization and function. In this study, we identify a role for the Drosophila melanogaster palmitoyl transferase Huntingtin-interacting protein 14 (HIP14) in neurotransmitter release. hip14 mutants show exocytic defects at low frequency stimulation and a nearly complete loss of synaptic transmission at higher temperature. Interestingly, two exocytic components known to be palmitoylated, cysteine string protein (CSP) and SNAP25, are severely mislocalized at hip14 mutant synapses. Complementary DNA rescue and localization experiments indicate that HIP14 is required solely in the nervous system and is essential for presynaptic function. Biochemical studies indicate that HIP14 palmitoylates CSP and that CSP is not palmitoylated in hip14 mutants. Furthermore, the hip14 exocytic defects can be suppressed by targeting CSP to synaptic vesicles using a chimeric protein approach. Our data indicate that HIP14 controls neurotransmitter release by regulating the trafficking of CSP to synapses.


Assuntos
Aciltransferases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Exocitose/fisiologia , Sistema Nervoso/metabolismo , Vesículas Sinápticas/metabolismo , Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/ultraestrutura , Gânglios dos Invertebrados/metabolismo , Gânglios dos Invertebrados/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/ultraestrutura , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Neurotransmissores/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...