Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967560

RESUMO

Cytochrome c oxidase (CcO) is a heme copper oxidase (HCO) that catalyzes the natural reduction of oxygen to water. A profound understanding of some of the elementary steps leading to the intricate 4e-/4H+ reduction of O2 is presently lacking. A total spin St = 1 FeIII-(O22-)-CuII (IP) intermediate is proposed to reduce the overpotentials associated with the reductive O-O bond rupture by allowing electron transfer from a tyrosine moiety without the necessity of any spin-surface crossing. Direct evidence of the involvement of IP in the CcO catalytic cycle is, however, missing. A number of heme copper peroxido complexes have been prepared as synthetic models of IP, but all of them possess the catalytically nonrelevant St = 0 ground state resulting from antiferromagnetic coupling between the S = 1/2 FeIII and CuII centers. In a complete nonheme approach, we now report the spectroscopic characterization and reactivity of the FeIII-(O22-)-CuII intermediates 1 and 2, which differ only by a single -CH3 versus -H substituent on the central amine of the tridentate ligands binding to copper. Complex 1 with an end-on peroxido core and ferromagnetically (St = 1) coupled FeIII and CuII centers performs H-bonding-mediated O-O bond cleavage in the presence of phenol to generate oxoiron(IV) and exchange-coupled copper(II) and PhO• moieties. In contrast, the µ-η2:η1 peroxido complex 2, with a St = 0 ground state, is unreactive toward phenol. Thus, the implications for spin topology contributions to O-O bond cleavage, as proposed for the heme FeIII-(O22-)-CuII intermediate in CcO, can be extended to nonheme chemistry.

2.
Angew Chem Int Ed Engl ; : e202407859, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923207

RESUMO

Heterogeneous catalysts with highly active and at the same time stable isolated metal sites constitute a key factor for the advancement of sustainable and cost-effective chemical synthesis. In particular, the development of more practical, and durable iron-based materials is of central interest for organic synthesis, especially for the preparation of chemical products related to life science applications. Here, we report the preparation of Fe-single atom catalysts (Fe-SACs) entrapped in N-doped mesoporous carbon support with unprecedented potential in the preparation of different kinds of amines. The synthetic protocol of Fe-SACs is based on primary pyrolysis of Fe-nitrogen complexes on SiO2 and subsequent removal of silica resulting in the formation of unique mesoporous N-doped carbon support with the pore size controlled by the size of the original silica nanoparticles. The resulting stable and reusable Fe-SACs allow for the reductive amination of a broad range of aldehydes and ketones with ammonia and amines to produce diverse primary, secondary, and tertiary amines including N-methylated products as well as drugs, agrochemicals, and other biomolecules (amino acid esters and amides) utilizing green hydrogen.

3.
Commun Chem ; 7(1): 66, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548895

RESUMO

Oxide-derived copper (OD-Cu) materials exhibit extraordinary catalytic activities in the electrochemical carbon dioxide reduction reaction (CO2RR), which likely relates to non-metallic material constituents formed in transitions between the oxidized and the reduced material. In time-resolved operando experiment, we track the structural dynamics of copper oxide reduction and its re-formation separately in the bulk of the catalyst material and at its surface using X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy. Surface-species transformations progress within seconds whereas the subsurface (bulk) processes unfold within minutes. Evidence is presented that electroreduction of OD-Cu foams results in kinetic trapping of subsurface (bulk) oxide species, especially for cycling between strongly oxidizing and reducing potentials. Specific reduction-oxidation protocols may optimize formation of bulk-oxide species and thereby catalytic properties. Together with the Raman-detected surface-adsorbed *OH and C-containing species, the oxide species could collectively facilitate *CO adsorption, resulting an enhanced selectivity towards valuable C2+ products during CO2RR.

4.
Small ; 20(29): e2309749, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38368266

RESUMO

Merely all transition-metal-based materials reconstruct into similar oxyhydroxides during the electrocatalytic oxygen evolution reaction (OER), severely limiting the options for a tailored OER catalyst design. In such reconstructions, initial constituent p-block elements take a sacrificial role and leach into the electrolyte as oxyanions, thereby losing the ability to tune the catalyst's properties systematically. From a thermodynamic point of view, indium is expected to behave differently and should remain in the solid phase under alkaline OER conditions. However, the structural behavior of transition metal indium phases during the OER remains unexplored. Herein, are synthesized intermetallic cobalt indium (CoIn3) nanoparticles and revealed by in situ X-ray absorption spectroscopy and scanning transmission microscopy that they undergo phase segregation to cobalt oxyhydroxide and indium hydroxide. The obtained cobalt oxyhydroxide outperforms a metallic-cobalt-derived one due to more accessible active sites. The observed phase segregation shows that indium behaves distinctively differently from most p-block elements and remains at the electrode surface, where it can form lasting interfaces with the active metal oxo phases.

5.
Chem Sci ; 15(2): 528-533, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179538

RESUMO

The N3O macrocycle of the 12-TMCO ligand stabilizes a high spin (S = 5/2) [FeIII(12-TMCO)(OOtBu)Cl]+ (3-Cl) species in the reaction of [FeII(12-TMCO)(OTf)2] (1-(OTf)2) with tert-butylhydroperoxide (tBuOOH) in the presence of tetraethylammonium chloride (NEt4Cl) in acetonitrile at -20 °C. In the absence of NEt4Cl the oxo-iron(iv) complex 2 [FeIV(12-TMCO)(O)(CH3CN)]2+ is formed, which can be further converted to 3-Cl by adding NEt4Cl and tBuOOH. The role of the cis-chloride ligand in the stabilization of the FeIII-OOtBu moiety can be extended to other anions including the thiolate ligand relevant to the enzyme superoxide reductase (SOR). The present study underlines the importance of subtle electronic changes and secondary interactions in the stability of the biologically relevant metal-dioxygen intermediates. It also provides some rationale for the dramatically different outcomes of the chemistry of iron(iii)peroxy intermediates formed in the catalytic cycles of SOR (Fe-O cleavage) and cytochrome P450 (O-O bond lysis) in similar N4S coordination environments.

6.
Small ; 20(21): e2308594, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38152974

RESUMO

The development of catalysts for an economical and efficient oxygen evolution reaction (OER) is critical for clean and sustainable energy storage and conversion. Nickel-iron-based (NiFe) nanostructures are widely investigated as active OER catalysts and especially shape-controlled nanocrystals exhibit optimized surface structure and electronic properties. However, the structural control from amorphous to well-defined crystals is usually time-consuming and requires multiple stages. Here, a universal two-step precipitation-hydrothermal approach is reported to prepare a series of NiFe-based nanocrystals (e.g., hydroxides, sulfides, and molybdates) from amorphous precipitates. Their morphology and evolution of atomic and electronic structure during this process are studied using conclusive microscopy and spectroscopy techniques. The short-term, additive-free, and low-cost method allows for the control of the crystallinity of the materials and facilitates the generation of nanosheets, nanorods, or nano-octahedra with excellent water oxidation activity. The NiFe-based crystalline catalysts exhibit slightly compromised initial activity but more robust long-term stability than their amorphous counterparts during electrochemical operation. This facile, reliable, and universal synthesis method is promising in strategies for fabricating NiFe-based nanostructures as efficient and economically valuable OER electrocatalysts.

7.
Angew Chem Int Ed Engl ; 62(10): e202209437, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541062

RESUMO

Diiron cofactors in enzymes perform diverse challenging transformations. The structures of high valent intermediates (Q in methane monooxygenase and X in ribonucleotide reductase) are debated since Fe-Fe distances of 2.5-3.4 Šwere attributed to "open" or "closed" cores with bridging or terminal oxido groups. We report the crystallographic and spectroscopic characterization of a FeIII 2 (µ-O)2 complex (2) with tetrahedral (4C) centres and short Fe-Fe distance (2.52 Å), persisting in organic solutions. 2 shows a large Fe K-pre-edge intensity, which is caused by the pronounced asymmetry at the TD FeIII centres due to the short Fe-µ-O bonds. A ≈2.5 ŠFe-Fe distance is unlikely for six-coordinate sites in Q or X, but for a Fe2 (µ-O)2 core containing four-coordinate (or by possible extension five-coordinate) iron centres there may be enough flexibility to accommodate a particularly short Fe-Fe separation with intense pre-edge transition. This finding may broaden the scope of models considered for the structure of high-valent diiron intermediates formed upon O2 activation in biology.


Assuntos
Ferro , Oxigênio , Ferro/química , Análise Espectral , Cristalografia por Raios X , Oxigênio/química , Oxirredução
8.
J Chem Inf Model ; 63(1): 161-172, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36468829

RESUMO

Chloroquine (CQ) is a first-choice drug against malaria and autoimmune diseases. It has been co-administered with zinc against SARS-CoV-2 and soon dismissed because of safety issues. The structural features of Zn-CQ complexes and the effect of CQ on zinc distribution in cells are poorly known. In this study, state-of-the-art computations combined with experiments were leveraged to solve the structural determinants of zinc-CQ interactions in solution and the solid state. NMR, ESI-MS, and X-ray absorption and diffraction methods were combined with ab initio molecular dynamics calculations to address the kinetic lability of this complex. Within the physiological pH range, CQ binds Zn2+ through the quinoline ring nitrogen, forming [Zn(CQH)Clx(H2O)3-x](3+)-x (x = 0, 1, 2, and 3) tetrahedral complexes. The Zn(CQH)Cl3 species is stable at neutral pH and at high chloride concentrations typical of the extracellular medium, but metal coordination is lost at a moderately low pH as in the lysosomal lumen. The pentacoordinate complex [Zn(CQH)(H2O)4]3+ may exist in the absence of chloride. This in vitro/in silico approach can be extended to other metal-targeting drugs and bioinorganic systems.


Assuntos
COVID-19 , Complexos de Coordenação , Humanos , Cloroquina/farmacologia , Cloroquina/química , Simulação de Dinâmica Molecular , Zinco/química , Cloretos , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Metais
9.
Inorg Chem ; 61(24): 9104-9118, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35658429

RESUMO

The design of molecular water oxidation catalysts (WOCs) requires a rational approach that considers the intermediate steps of the catalytic cycle, including water binding, deprotonation, storage of oxidizing equivalents, O-O bond formation, and O2 release. We investigated several of these properties for a series of base metal complexes (M = Mn, Fe, Co, Ni) bearing two variants of a pentapyridyl ligand framework, of which some were reported previously to be active WOCs. We found that only [Fe(Py5OMe)Cl]+ (Py5OMe = pyridine-2,6-diylbis[di-(pyridin-2-yl)methoxymethane]) showed an appreciable catalytic activity with a turnover number (TON) = 130 in light-driven experiments using the [Ru(bpy)3]2+/S2O82- system at pH 8.0, but that activity is demonstrated to arise from the rapid degradation in the buffered solution leading to the formation of catalytically active amorphous iron oxide/hydroxide (FeOOH), which subsequently lost the catalytic activity by forming more extensive and structured FeOOH species. The detailed analysis of the redox and water-binding properties employing electrochemistry, X-ray absorption spectroscopy (XAS), UV-vis spectroscopy, and density-functional theory (DFT) showed that all complexes were able to undergo the MIII/MII oxidation, but none was able to yield a detectable amount of a MIV state in our potential window (up to +2 V vs SHE). This inability was traced to (i) the preference for binding Cl- or acetonitrile instead of water-derived species in the apical position, which excludes redox leveling via proton coupled electron transfer, and (ii) the lack of sigma donor ligands that would stabilize oxidation states beyond MIII. On that basis, design features for next-generation molecular WOCs are suggested.

10.
Inorg Chem ; 61(26): 10036-10042, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35729755

RESUMO

The H-cluster is the catalytic cofactor of [FeFe]-hydrogenase, a metalloenzyme that catalyzes the formation of dihydrogen (H2). The catalytic diiron site of the H-cluster carries two cyanide and three carbon monoxide ligands, making it an excellent target for IR spectroscopy. In previous work, we identified an oxidized and protonated H-cluster species, whose IR signature differs from that of the oxidized resting state (Hox) by a small but distinct shift to higher frequencies. This "blue shift" was explained by a protonation at the [4Fe-4S] subcomplex of the H-cluster. The novel species, denoted HoxH, was preferentially accumulated at low pH and in the presence of the exogenous reductant sodium dithionite (NaDT). When HoxH was reacted with H2, the hydride state (Hhyd) was formed, a key intermediate of [FeFe]-hydrogenase turnover. A recent publication revisited our protocol for the accumulation of HoxH in wild-type [FeFe]-hydrogenase, concluding that inhibition by NaDT decay products rather than cofactor protonation causes the spectroscopic "blue shift". Here, we demonstrate that HoxH formation does not require the presence of NaDT (or its decay products), but accumulates also with the milder reductants tris(2-carboxyethyl)phosphine, dithiothreitol, or ascorbic acid, in particular at low pH. Our data consistently suggest that HoxH is accumulated when deprotonation of the H-cluster is impaired, thereby preventing the regain of the oxidized resting state Hox in the catalytic cycle.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Monóxido de Carbono/química , Domínio Catalítico , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Oxirredução
11.
Proc Natl Acad Sci U S A ; 119(16): e2117807119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412912

RESUMO

Zinc deficiency is commonly attributed to inadequate absorption of the metal. Instead, we show that body zinc stores in Drosophila melanogaster depend on tryptophan consumption. Hence, a dietary amino acid regulates zinc status of the whole insect­a finding consistent with the widespread requirement of zinc as a protein cofactor. Specifically, the tryptophan metabolite kynurenine is released from insect fat bodies and induces the formation of zinc storage granules in Malpighian tubules, where 3-hydroxykynurenine and xanthurenic acid act as endogenous zinc chelators. Kynurenine functions as a peripheral zinc-regulating hormone and is converted into a 3-hydroxykynurenine­zinc­chloride complex, precipitating within the storage granules. Thus, zinc and the kynurenine pathway­well-known modulators of immunity, blood pressure, aging, and neurodegeneration­are physiologically connected.


Assuntos
Drosophila melanogaster , Cinurenina , Triptofano , Zinco , Animais , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Cinurenina/metabolismo , Túbulos de Malpighi/metabolismo , Triptofano/metabolismo , Zinco/metabolismo
12.
Chemistry ; 28(31): e202200627, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35253932

RESUMO

B12 -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12 -dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C-H bonds.


Assuntos
Metiltransferases , S-Adenosilmetionina , Metilação , Metiltransferases/metabolismo , S-Adenosilmetionina/química , Triptofano/química , Vitamina B 12/química
13.
Dalton Trans ; 51(12): 4634-4643, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35212328

RESUMO

Sustainable sources of hydrogen are a vital component of the envisioned energy transition. Understanding and mimicking the [FeFe]-hydrogenase provides a route to achieving this goal. In this study we re-visit a molecular mimic of the hydrogenase, the propyl dithiolate bridged complex [Fe2(µ-pdt)(CO)4(CN)2]2-, in which the cyanide ligands are tuned via Lewis acid interactions. This system provides a rare example of a cyanide containing [FeFe]-hydrogenase mimic capable of catalytic proton reduction, as demonstrated by cyclic voltammetry. EPR, FTIR, UV-vis and X-ray absorption spectroscopy are employed to characterize the species produced by protonation, and reduction or oxidation of the complex. The results reveal that biologically relevant iron-oxidation states can be generated, potentially including short-lived mixed valent Fe(I)Fe(II) species. We propose that catalysis is initiated by protonation of the diiron complex and the resulting di-ferrous bridging hydride species can subsequently follow two different pathways to promote H2 gas formation depending on the applied reduction potential.

14.
Inorg Chem ; 60(23): 17498-17508, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34757735

RESUMO

Bimetallic active sites in enzymes catalyze small-molecule conversions that are among the top 10 challenges in chemistry. As different metal cofactors are typically incorporated in varying protein scaffolds, it is demanding to disentangle the individual contributions of the metal and the protein matrix to the activity. Here, we compared the structure, properties, and hydrogen peroxide reactivity of four homobimetallic cofactors (Mn(II)2, Fe(II)2, Co(II)2, Ni(II)2) that were reconstituted into a four-helix bundle protein. Reconstituted proteins were studied in solution and in crystals. All metals bind with high affinity and yield similar cofactor structures. Cofactor variants react with H2O2 but differ in their turnover rates, accumulated oxidation states, and trapped peroxide-bound intermediates. Varying the metal composition thus creates opportunities to tune the reactivity of the bimetallic cofactor and to study and functionalize reactive species.


Assuntos
Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Metais Pesados/metabolismo , Catalase/química , Peróxido de Hidrogênio/química , Metais Pesados/química , Oxirredução
15.
Anal Bioanal Chem ; 413(21): 5395-5408, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34274992

RESUMO

Transition metal oxides are promising electrocatalysts for water oxidation, i.e., the oxygen evolution reaction (OER), which is critical in electrochemical production of non-fossil fuels. The involvement of oxidation state changes of the metal in OER electrocatalysis is increasingly recognized in the literature. Tracing these oxidation states under operation conditions could provide relevant information for performance optimization and development of durable catalysts, but further methodical developments are needed. Here, we propose a strategy to use single-energy X-ray absorption spectroscopy for monitoring metal oxidation-state changes during OER operation with millisecond time resolution. The procedure to obtain time-resolved oxidation state values, using two calibration curves, is explained in detail. We demonstrate the significance of this approach as well as possible sources of data misinterpretation. We conclude that the combination of X-ray absorption spectroscopy with electrochemical techniques allows us to investigate the kinetics of redox transitions and to distinguish the catalytic current from the redox current. Tracking of the oxidation state changes of Co ions in electrodeposited oxide films during cyclic voltammetry in neutral pH electrolyte serves as a proof of principle.

16.
Chem Commun (Camb) ; 57(23): 2947-2950, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33621306

RESUMO

A mononuclear oxoiron(iv) complex 1-trans bearing two equatorial sulfur ligations is synthesized and characterized as an active-site model of the elusive sulfur-ligated FeIV[double bond, length as m-dash]O intermediates in non-heme iron oxygenases. The introduction of sulfur ligands weakens the Fe[double bond, length as m-dash]O bond and enhances the oxidative reactivity of the FeIV[double bond, length as m-dash]O unit with a diminished deuterium kinetic isotope effect, thereby providing a compelling rationale for nature's use of the cis-thiolate ligated oxoiron(iv) motif in key metabolic transformations.

18.
Angew Chem Int Ed Engl ; 60(12): 6752-6756, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33348460

RESUMO

S=2 oxoiron(IV) species act as reactive intermediates in the catalytic cycle of nonheme iron oxygenases. The few available synthetic S=2 FeIV =O complexes known to date are often limited to trigonal bipyramidal and very rarely to octahedral geometries. Herein we describe the generation and characterization of an S=2 pseudotetrahedral FeIV =O complex 2 supported by the sterically demanding 1,4,7-tri-tert-butyl-1,4,7-triazacyclononane ligand. Complex 2 is a very potent oxidant in hydrogen atom abstraction (HAA) reactions with large non-classical deuterium kinetic isotope effects, suggesting hydrogen tunneling contributions. For sterically encumbered substrates, direct HAA is impeded and an alternative oxidative asynchronous proton-coupled electron transfer mechanism prevails, which is unique within the nonheme oxoiron community. The high reactivity and the similar spectroscopic parameters make 2 one of the best electronic and functional models for a biological oxoiron(IV) intermediate of taurine dioxygenase (TauD-J).

19.
Nat Commun ; 11(1): 6110, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257675

RESUMO

Water oxidation and concomitant dioxygen formation by the manganese-calcium cluster of oxygenic photosynthesis has shaped the biosphere, atmosphere, and geosphere. It has been hypothesized that at an early stage of evolution, before photosynthetic water oxidation became prominent, light-driven formation of manganese oxides from dissolved Mn(2+) ions may have played a key role in bioenergetics and possibly facilitated early geological manganese deposits. Here we report the biochemical evidence for the ability of photosystems to form extended manganese oxide particles. The photochemical redox processes in spinach photosystem-II particles devoid of the manganese-calcium cluster are tracked by visible-light and X-ray spectroscopy. Oxidation of dissolved manganese ions results in high-valent Mn(III,IV)-oxide nanoparticles of the birnessite type bound to photosystem II, with 50-100 manganese ions per photosystem. Having shown that even today's photosystem II can form birnessite-type oxide particles efficiently, we propose an evolutionary scenario, which involves manganese-oxide production by ancestral photosystems, later followed by down-sizing of protein-bound manganese-oxide nanoparticles to finally yield today's catalyst of photosynthetic water oxidation.


Assuntos
Luz , Compostos de Manganês/metabolismo , Manganês/metabolismo , Óxidos/metabolismo , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , 2,6-Dicloroindofenol , Atmosfera , Catálise , Evolução Molecular , Íons , Cinética , Modelos Moleculares , Oxirredução/efeitos da radiação , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Spinacia oleracea/metabolismo
20.
Inorg Chem ; 59(22): 16474-16488, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33147959

RESUMO

[FeFe]-hydrogenases are nature's blueprint for efficient hydrogen turnover. Understanding their enzymatic mechanism may improve technological H2 fuel generation. The active-site cofactor (H-cluster) consists of a [4Fe-4S] cluster ([4Fe]H), cysteine-linked to a diiron site ([2Fe]H) carrying an azadithiolate (adt) group, terminal cyanide and carbon monoxide ligands, and a bridging carbon monoxide (µCO) in the oxidized protein (Hox). Recently, the debate on the structure of reduced H-cluster states was intensified by the assignment of new species under cryogenic conditions. We investigated temperature effects (4-280 K) in infrared (IR) and X-ray absorption spectroscopy (XAS) data of [FeFe]-hydrogenases using fit analyses and quantum-chemical calculations. IR data from our laboratory and literature sources were evaluated. At ambient temperatures, reduced H-cluster states with a bridging hydride (µH-, in Hred and Hsred) or with an additional proton at [4Fe]H (Hred') or at the distal iron of [2Fe]H (Hhyd) prevail. At cryogenic temperatures, these species are largely replaced by states that hold a µCO, lack [4Fe]H protonation, and bind an additional proton at the adt nitrogen (HredH+ and HsredH+). XAS revealed the atomic coordinate dispersion (i.e., the Debye-Waller parameter, 2σ2) of the iron-ligand bonds and Fe-Fe distances in the oxidized and reduced H-cluster. 2σ2 showed a temperature dependence typical for the so-called protein-glass transition, with small changes below ∼200 K and a pronounced increase above this "breakpoint". This behavior is attributed to the freezing-out of larger-scale anharmonic motions of amino acid side chains and water species. We propose that protonation at [4Fe]H as well as ligand rearrangement and µH- binding at [2Fe]H are impaired because of restricted molecular mobility at cryogenic temperatures so that protonation can be biased toward adt. We conclude that a H-cluster with a µCO, selective [4Fe]H or [2Fe]H protonation, and catalytic proton transfer via adt facilitates efficient H2 conversion in [FeFe]-hydrogenase.


Assuntos
Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Temperatura , Biocatálise , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Teoria da Densidade Funcional , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...