Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 1-26, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34941499

RESUMO

Scene graph is a structured representation of a scene that can clearly express the objects, attributes, and relationships between objects in the scene. As computer vision technology continues to develop, people are no longer satisfied with simply detecting and recognizing objects in images; instead, people look forward to a higher level of understanding and reasoning about visual scenes. For example, given an image, we want to not only detect and recognize objects in the image, but also understand the relationship between objects (visual relationship detection), and generate a text description (image captioning) based on the image content. Alternatively, we might want the machine to tell us what the little girl in the image is doing (Visual Question Answering (VQA)), or even remove the dog from the image and find similar images (image editing and retrieval), etc. These tasks require a higher level of understanding and reasoning for image vision tasks. The scene graph is just such a powerful tool for scene understanding. Therefore, scene graphs have attracted the attention of a large number of researchers, and related research is often cross-modal, complex, and rapidly developing. However, no relatively systematic survey of scene graphs exists at present. To this end, this survey conducts a comprehensive investigation of the current scene graph research. More specifically, we first summarize the general definition of the scene graph, then conducte a comprehensive and systematic discussion on the generation method of the scene graph (SGG) and the SGG with the aid of prior knowledge. We then investigate the main applications of scene graphs and summarize the most commonly used datasets. Finally, we provide some insights into the future development of scene graphs.

2.
IEEE Trans Pattern Anal Mach Intell ; 45(3): 3848-3861, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35709117

RESUMO

An integral part of video analysis and surveillance is temporal activity detection, which means to simultaneously recognize and localize activities in long untrimmed videos. Currently, the most effective methods of temporal activity detection are based on deep learning, and they typically perform very well with large scale annotated videos for training. However, these methods are limited in real applications due to the unavailable videos about certain activity classes and the time-consuming data annotation. To solve this challenging problem, we propose a novel task setting called zero-shot temporal activity detection (ZSTAD), where activities that have never been seen in training still need to be detected. We design an end-to-end deep transferable network TN-ZSTAD as the architecture for this solution. On the one hand, this network utilizes an activity graph transformer to predict a set of activity instances that appear in the video, rather than produces many activity proposals in advance. On the other hand, this network captures the common semantics of seen and unseen activities from their corresponding label embeddings, and it is optimized with an innovative loss function that considers the classification property on seen activities and the transfer property on unseen activities together. Experiments on the THUMOS'14, Charades, and ActivityNet datasets show promising performance in terms of detecting unseen activities.

3.
IEEE Trans Pattern Anal Mach Intell ; 45(3): 3918-3932, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35679386

RESUMO

The main challenge in the field of unsupervised machine translation (UMT) is to associate source-target sentences in the latent space. As people who speak different languages share biologically similar visual systems, various unsupervised multi-modal machine translation (UMMT) models have been proposed to improve the performances of UMT by employing visual contents in natural images to facilitate alignment. Commonly, relation information is the important semantic in a sentence. Compared with images, videos can better present the interactions between objects and the ways in which an object transforms over time. However, current state-of-the-art methods only explore scene-level or object-level information from images without explicitly modeling objects relation; thus, they are sensitive to spurious correlations, which poses a new challenge for UMMT models. In this paper, we employ a spatial-temporal graph obtained from videos to exploit object interactions in space and time for disambiguation purposes and to promote latent space alignment in UMMT. Our model employs multi-modal back-translation and features pseudo-visual pivoting, in which we learn a shared multilingual visual-semantic embedding space and incorporate visually pivoted captioning as additional weak supervision. Experimental results on the VATEX Translation 2020 and HowToWorld datasets validate the translation capabilities of our model on both sentence-level and word-level and generalizes well when videos are not available during the testing phase.

4.
Artigo em Inglês | MEDLINE | ID: mdl-19163898

RESUMO

Video surveillance is an alternative approach to staff or self-reporting that has the potential to detect and monitor aggressive behaviors more accurately. In this paper, we propose an automatic algorithm capable of recognizing aggressive behaviors from video records using local binary motion descriptors. The proposed algorithm may increase the accuracy for retrieving aggressive behaviors from video records, and thereby facilitates scientific inquiry into this low frequency but high impact phenomenon that eludes other measurement approaches.


Assuntos
Agressão/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Movimento/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Gravação em Vídeo/métodos , Imagem Corporal Total/métodos , Algoritmos , Inteligência Artificial , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...