Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 82, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622301

RESUMO

Mantle plume-related magmas typically have higher chalcophile and siderophile element (CSE) contents than mid-ocean ridge basalts (MORB). These differences are often attributed to sulfide-under-saturation of plume-related melts. However, because of eruption-related degassing of sulfur (S) and the compositional, pressure, temperature and redox effects on S-solubility, understanding the magmatic behavior of S is challenging. Using CSE data for oceanic plateau basalts (OPB), which rarely degas S, we show that many OPB are sulfide-saturated. Differences in the timing of sulfide-saturation between individual OPB suites can be explained by pressure effects on sulfur solubility associated with ascent through over-thickened crust. Importantly, where S-degassing does occur, OPB have higher CSE contents than S-undegassed melts at similar stages of differentiation. This can be explained by resorption of earlier-formed sulfides, which might play an important role in enriching degassed melts in sulfide-compatible CSE and potentially contributes to anomalous enrichments of CSE in the crust.

2.
Nat Commun ; 8: 14062, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28082738

RESUMO

The amount of carbon present in Earth's mantle affects the dynamics of melting, volcanic eruption style and the evolution of Earth's atmosphere via planetary outgassing. Mantle carbon concentrations are difficult to quantify because most magmas are strongly degassed upon eruption. Here we report undegassed carbon concentrations from a new set of olivine-hosted melt inclusions from the Mid-Atlantic Ridge. We use the correlations of CO2 with trace elements to define an average carbon abundance for the upper mantle. Our results indicate that the upper mantle carbon content is highly heterogeneous, varying by almost two orders of magnitude globally, with the potential to produce large geographic variations in melt fraction below the volatile-free solidus. Such heterogeneity will manifest as variations in the depths at which melt becomes interconnected and detectable, the CO2 fluxes at mid-ocean ridges, the depth of the lithosphere-asthenosphere boundary, and mantle conductivity.

3.
Science ; 328(5980): 884-7, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20466929

RESUMO

Several models exist to describe the growth and evolution of Earth; however, variables such as the type of precursor materials, extent of mixing, and material loss during accretion are poorly constrained. High-precision palladium-silver isotope data show that Earth's mantle is similar in 107Ag/109Ag to primitive, volatile-rich chondrites, suggesting that Earth accreted a considerable amount of material with high contents of moderately volatile elements. Contradictory evidence from terrestrial chromium and strontium isotope data are reconciled by heterogeneous accretion, which includes a transition from dominantly volatile-depleted to volatile-rich materials with possibly high water contents. The Moon-forming giant impact probably involved the collision with a Mars-like protoplanet that had an oxidized mantle, enriched in moderately volatile elements.

4.
Science ; 258(5083): 821-2, 1992 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17777036
5.
Science ; 256(5056): 517-20, 1992 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17787949

RESUMO

Many oceanic island basalts show sublinear subparallel arrays in Sr-Nd-Pb isotopic space. The depleted upper mantle is rarely a mixing end-member of these arrays, as would be expected if mantle plumes originated at a 670-kilometer boundary layer and entrained upper mantle during ascent. Instead, the arrays are fan-shaped and appear to converge on a volume in isotopic space characterized by low (87)Sr/(86)Sr and high (143)Nd/(144)Nd, (206)Pb/(204)Pb, and (3)He/(4)He ratios. This new isotopic component may be the lower mantle, entrained into plumes originating from the core-mantle boundary layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...