Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 59(36): 11196-11208, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33362040

RESUMO

We propose a snapshot spectral imaging method for the visible spectral range using a single monochromatic camera equipped with a two-dimensional (2D) binary-encoded phase diffuser placed at the pupil of the imaging lens and by resorting to deep learning (DL) algorithms for signal reconstruction. While spectral imaging was shown to be feasible using two cameras equipped with a single, one-dimensional (1D) binary diffuser and compressed sensing (CS) algorithms [Appl. Opt.59, 7853 (2020).APOPAI0003-693510.1364/AO.395541], the suggested diffuser design expands the optical response and creates optical spatial and spectral encoding along both dimensions of the image sensor. To recover the spatial and spectral information from the dispersed and diffused (DD) monochromatic snapshot, we developed novel DL algorithms, dubbed DD-Nets, which are tailored to the unique response of the optical system, which includes either a 1D or a 2D diffuser. High-quality reconstructions of the spectral cube in simulation and lab experiments are presented for system configurations consisting of a single monochromatic camera with either a 1D or a 2D diffuser. We demonstrate that the suggested system configuration with the 2D diffuser outperforms system configurations with a 1D diffuser that utilize either DL-based or CS-based algorithms for the reconstruction of the spectral cube.

2.
Appl Opt ; 59(26): 7853-7864, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32976457

RESUMO

We propose designs of pupil-domain optical diffusers for a snapshot spectral imaging system using binary-phase encoding. The suggested designs enable the creation of point-spread functions with defined optical response, having profiles that are dependent on incident wavefront wavelength. This efficient combination of dispersive and diffusive optical responses enables us to perform snapshot spectral imaging using compressed sensing algorithms while keeping a high optical throughput alongside a simple fabrication process. Experimental results are reported.

3.
Appl Opt ; 59(4): 1058-1070, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32225242

RESUMO

We propose a snapshot spectral imaging method for the visible spectral range using two digital cameras placed side-by-side: a regular red-green-blue (RGB) camera and a monochromatic camera equipped with a dispersive diffractive diffuser placed at the pupil of the imaging lens. While spectral imaging was shown to be feasible using a single monochromatic camera with a pupil diffuser [Appl. Opt.55, 432 (2016)APOPAI0003-693510.1364/AO.55.000432], adding an RGB camera provides more spatial and spectral information for stable reconstruction of the spectral cube of a scene. Results of optical experiments confirm that the combined data from the two cameras relax the complexity of the underdetermined reconstruction problem and improve the reconstructed image quality obtained using compressed sensing-based algorithms.

4.
Appl Opt ; 55(3): 432-43, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26835914

RESUMO

We propose a spectral imaging method that allows a regular digital camera to be converted into a snapshot spectral imager by equipping the camera with a dispersive diffuser and with a compressed sensing-based algorithm for digital processing. Results of optical experiments are reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...