Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sports Sci Med ; 22(1): 166-174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36876174

RESUMO

The present study aims to determine the test-retest reliability of the input signal (INPUT) of foot impact and soft tissue vibration (STV) of the lower limb muscles during treadmill running. Twenty-six recreational runners participated in three running trials at constant velocity (10 km/h) within two days. The INPUT and STV of gastrocnemius medialis (GAS) and vastus lateralis (VL) were extracted from 100 steps measured by three triaxial accelerometers. The Intraclass Correlation Coefficient (ICC) was calculated to determine the Intra-trial and Inter-day reliability of the different variables. Intra-trial reliability results indicated that most of the INPUT and GAS STV parameters, except for damping coefficient and setting time, have good to excellent reliability (0.75 < ICC < 0.9) from the beginning of the run (10 steps) to the end. In contrast, only 4 VL STV parameters showed good reliability. Furthermore, inter-trial reliability measured on day one showed that the number of reliable parameters reduced, especially for VL STV, and more steps were required (20 < steps < 80) to achieve good reliability. Inter-day reliability results showed that only one VL STV parameter reached good reliability. Therefore, the present results show that the measurement of the foot impact and the calf muscle vibrations present a good to excellent reliability measured on a single trial and two trials carried out on the same day. The reliability of these parameters remains good when comparing two days of experimentation. We recommend measuring impact and STV parameters during treadmill running in the same session.


Assuntos
Corrida , Vibração , Humanos , Reprodutibilidade dos Testes , Músculo Quadríceps , Extremidade Inferior
2.
Res Sports Med ; 31(4): 331-341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34477044

RESUMO

This study investigated the effect of jump landing direction and leg dominance on the Dynamic Postural Stability Index (DPSI) and the importance of the hamstring-to-quadriceps (H/Q) co-activation ratio. Fifteen female sports players performed unilateral jump landing, for the dominant (DL) and the non-dominant (NDL) legs in anterior (AJL), lateral (LJL), and vertical directions (DJL). The results indicated that the DPSI was higher in DJL compared to LJL and AJL. Besides, the DPSI score during DJL was higher in NDL indicating lower stabilization capacity associated with a lower H/Q co-activation ratio. A significant correlation was found between H/Q co-activation ratio and DPSI in the DL during AJL (r = -0.57). Current results suggest that DJL was more appropriate to evaluate dynamic postural stability since it highlights limb asymmetry. In addition, H/Q co-activation appears to play an essential role in the effectiveness of ground reaction force stabilization during jump landing.


Assuntos
Músculos Isquiossurais , Esportes , Humanos , Feminino , Perna (Membro)/fisiologia , Músculo Quadríceps , Fenômenos Biomecânicos
3.
Scand J Med Sci Sports ; 32(10): 1477-1492, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35730335

RESUMO

The purpose of the study was to assess sex-related differences in resting mechanical properties and adaptations of skeletal muscles and tendons in response to trail running races of different distances using multi-site shear wave elastography assessments of the lower limb, force capacity and blood analyses. Sex differences in resting mechanical properties of knee extensor and plantar flexor muscles and tendons were characterized by shear wave velocity (SWV) measurements in healthy males (N = 42) and females (N = 25) trained in long-distance running. Effects of running distance on muscle and tendon properties were assessed in short (<60 km, N = 23) vs. long (>100 km, N = 26) distance races. Changes in isometric maximal voluntary contraction torque, serum C-reactive protein and creatine kinase activity were also quantified after running races. Higher SWV of relaxed triceps surae muscle was detected in females as compared to males before running races (+4.8%, p = 0.006), but the significant increases in triceps surae muscle group (+7.0%, p = 0.001) and patellar tendon SWV (+15.4%, p = 0.001) after short-distance races were independent of sex. A significant decrease in triceps surae muscle SWV was found after long-distance races in the whole experimental population (-3.1%, p = 0.049). Post-races increase in C-reactive protein and creatine kinase activity were significantly correlated to the relative decreases in triceps surae and quadriceps femoris skeletal muscle SWV (ρ = -0.56, p = 0.001 and ρ = -0.51, p = 0.001, respectively). Resting mechanical properties of muscles and tendons are affected by sex, and adaptations to trail races are related to running distance. Exercise-induced changes in resting skeletal muscle mechanical properties are associated with enhanced indirect markers of inflammation and muscle damage.


Assuntos
Contração Muscular , Corrida , Fenômenos Biomecânicos , Proteína C-Reativa , Creatina Quinase , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Corrida/fisiologia , Caracteres Sexuais , Tendões/diagnóstico por imagem , Tendões/fisiologia
4.
Front Physiol ; 12: 723041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707509

RESUMO

The present study aimed to investigate the relationship between linear deceleration performance and explosive strength capacity of the knee muscles. Fourteen female professional soccer players completed the maximal sprint deceleration tests and knee flexor (KF) and knee extensor (KE) isokinetic concentric (240° and 60°.s-1) and eccentric contractions (30°.s-1). Linear deceleration performance was evaluated from horizontal breaking force (F H), power (P H), and impulse (I H) during a maximal linear deceleration. The peak torque (PT) of KF and KE, PT ratio between KF and KE (conventional and functional H/Q ratio), rate of torque development (RTD) for each muscle group, and RTD between KF and KE (RTD H/Q) were extracted from the isokinetic contractions. Pearson's correlation coefficients revealed that the eccentric (30°.s-1) and concentric (60°.s-1, 240°.s-1) KE peak torque, and the concentric KF peak torque (240°.s-1) were significantly correlated with FH, PH , and IH (-0.75

5.
Front Physiol ; 12: 627674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613321

RESUMO

The objective of this study was to examine the effect of fatigue on maximal and rapid force capacities and muscular activation of the knee extensors and flexors. Seventeen professional soccer players volunteered to participate in this study. Peak torque (Tpeak) and rate of torque development (RTD) of knee flexor (90°. s-1, -30°. s-1) and extensor (90°. s-1) muscles were measured before and after fatigue (i.e., 30 maximal knee extension and flexion repetitions at 180°s-1) performed on an isokinetic dynamometer. Hamstring to quadriceps peak strength and RTD ratios were calculated. Besides, using surface EMG, the mean level of activation (RMSmean), Rate of EMG Rise (RER), and EMG Frequency-Time maps were measured on quadriceps and hamstring muscles. Following fatigue, Tpeak, RTD, RER declined significantly in the two muscle groups (all p < 0.05) without modification of RMSmean. No decrease in conventional and functional H/Q ratios was observed after fatigue except for a significant increase in the H ecc30/Q con180 ratios (1.03 ± 0.19 vs. 1.36 ± 0.33, p < 0.001). Besides, the RTD H/Q ratios decreased significantly after fatigue, and the statistical parametric mapping analysis (SPM) performed on the EMG/angle curves, and EMG Frequency-Time maps showed that fatigue strongly influenced the muscle activation during the first 100 ms of the movement, following the higher EMG frequency component shift toward the lower frequency component. Our results show that the reduction of RTD and RER during the first 100 ms of the contraction after fatigue exercise makes more sense than any H/Q ratio modification in understanding injury risk in soccer players.

6.
Eur J Sport Sci ; 21(12): 1718-1726, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33331801

RESUMO

The Volodalen® field method permits to classify runners into aerial or terrestrial, based on vertical oscillation, upper-body motion, pelvis and foot position at ground contact, and foot strike pattern. The present study aimed to compare the sprint running force-velocity profiles between aerial and terrestrial runners. Sixty-Four French National-Level young soccer players (28 females, 36 males) performed three trials of unloaded maximal 40 m sprints. External horizontal power-force-velocity relationships were computed using a validated biomechanical model and based on the velocity-time curve. Accordingly, the participants were classified into patterns in aerial and terrestrial runners. Terrestrial runners showed a higher maximal horizontal force (F0) (6.73 ± 1.03 vs 6.01 ± 0.94 N·kg-1), maximal horizontal power (Pmax) (14.04 ± 3.24 vs 12.51 ± 3.31W·kg-1), maximal acceleration (Acc) (6.83 ± 0.85 vs 6.26 ± 0.89 m·s-2), and maximal rate of horizontal force (RFmax) (57.41 ± 4.64 vs 52.81 ± 5.69%) compared to aerial runners. In contrast, terrestrial runners displayed a more negative rate of decrease of RF (DRF) (-11.65 ± 1.71 vs -10.23 ± 1.66%) and slope of the Force-Velocity relationship (F-V slope) (-0.83 ± 0.11 vs -0.77 ± 0.10 N·s·m-1·kg-1) than aerial runners. The results indicate that terrestrial runners displayed more efficient force production in the forward direction and displayed more "force-oriented" F-V profiles. Nevertheless, aerial runners were more effective in maintaining a net horizontal force production with increasing speed. Our results suggest that terrestrial runners could be more adapted to the specific short distance and high acceleration sprints running.


Assuntos
Desempenho Atlético , Corrida , Futebol , Aceleração , Fenômenos Biomecânicos , Estudos Transversais , Feminino , Humanos , Masculino
7.
IEEE Trans Biomed Eng ; 68(4): 1409-1416, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33147139

RESUMO

OBJECTIVE: The purpose of this study was to assess whether accelerometry effectively reflects muscle vibrations measured with ultrafast ultrasonography. METHODS: Vibration characteristics initiated on the vastus lateralis muscle by an impactor were compared when assessed with accelerometry and ultrasonography. Continuous wavelet transforms and statistical parametric mapping (SPM) were performed to identify discrepancies in vibration power over time and frequency between the two devices. RESULTS: The SPM analysis revealed that the accelerometer underestimated the muscle vibration power above 50 Hz during the first 0.06 seconds post impact. Furthermore, the accelerometer overestimated the muscle vibration power under 20 Hz, from 0.1 seconds after the impact. Linear regression revealed that the thicker the subcutaneous fat localized under the accelerometer, the more the muscle vibration frequency and damping were underestimated by the accelerometer. CONCLUSION: The skin and the fat tissues acted like a low-pass filter above 50 Hz and oscillated in a less damped manner than the muscle tissue under 20 Hz. SIGNIFICANCE: To eliminate some artifacts caused by the superficial tissues and assess the muscle vibration characteristics with accelerometry, it is suggested to 1) high-pass filter the acceleration signal at a frequency of 20 Hz, under certain conditions, and 2) include participants with less fat thickness. Therefore, the subcutaneous thickness must be systematically quantified under each accelerometer location to clarify the differences between subjects and muscles.


Assuntos
Músculo Esquelético , Vibração , Aceleração , Acelerometria , Humanos , Músculo Esquelético/diagnóstico por imagem , Ultrassonografia
8.
J Hum Kinet ; 75: 139-148, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33312302

RESUMO

Self-myofascial release (SMR) is a popular method to potentially increase the compliance and extensibility of the fascia and reduce muscle stiffness. The purpose of this study was to examine the acute effects of posterior muscle chain SMR on flexibility, vertical jump performance and balance ability. Eighteen young participants volunteered to take part in this crossover design study. They performed two self-massage sessions in randomized order separated by at least one week. One session consisted of posterior muscle chain SMR whereas the other one was performed on the upper limbs as a control intervention (CON). Flexibility was measured with the Toe Touch Test (TTT), Weight-Bearing Lunge Test (WBLT), and Straight Leg Raise Test (SLR). Jump performance was evaluated during a squat jump, a counter movement jump and a stiffness jump. Dynamic balance ability was assessed through the Star Excursion Balance Test. All these variables were measured before and after each intervention. A significant increase in flexibility (+3.5 ± 1.8 cm, +1.6 ± 1.0°, and +7.7 ± 4.0° for the TTT, WLBT, and SLR, respectively, p < 0.003) and balance performance (4.8 ± 3.9 cm, p < 0.003) was observed following SMR intervention compared to CON. Conversely, jumping performance was unchanged in both groups. SMR improves joint flexibility and dynamic balance ability.

9.
J Appl Physiol (1985) ; 124(4): 831-839, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357495

RESUMO

Force-velocity tests performed on stationary cycle ergometers are widely used to assess the torque- and power-generating capacities of the lower limbs. The aim of this study was to identify how testing and modeling procedures influence the assessment of individual torque-cadence and power-cadence relationships. Seventeen males completed 62 ± 16 pedal cycles from six 6-s all-out efforts interspersed with 5 min of rest. True measures of maximal power for a particular cadence were obtained for 24 ± 3 pedal cycles, while power was only 94 ± 3% of the true maximum in 19 ± 5 pedal cycles. Pedal cycles showing maximal levels of power also displayed higher levels of electromyography (EMG: 89 ± 7 vs . 87 ± 7%) and coactivation (34 ± 11 vs . 31 ± 10 arbitrary units), as well as lower variability in crank torque and EMG profiles. Compared with the linear and second-order polynomial models that are traditionally used, a better goodness of fit was obtained when the torque-cadence and power-cadence relationships were predicted using second- and third-order polynomials, respectively. The later modeling procedures also revealed an asymmetry in the power-cadence relationship in most participants (i.e., 15 out of 17) and provided a better estimation of maximal cadence [Cmax: 214 ± 20 revolutions/min (rpm)] from the x-intercept of power-cadence relationships (C0: 214 ± 14 rpm). Therefore, we recommend predicting the individual shapes of torque- and power-cadence relationships using second- and third-order polynomial regressions after having selected pedal cycles during which true measures of cadence-specific maximal power were recorded. NEW & NOTEWORTHY This study is the first to demonstrate that suboptimal activation of the lower limb muscles accompanied reductions in cadence-specific levels of torque and power produced during a force-velocity test performed on a stationary cycle ergometer. This research is also the first to show that, in most noncyclist participants, torque-cadence relationships are not linear, whereas power-cadence relationships display asymmetric shapes, with power production decreasing rapidly when cadence increases beyond 180 revolutions/min.


Assuntos
Ciclismo/fisiologia , Adulto , Fenômenos Biomecânicos/fisiologia , Eletromiografia/métodos , Ergometria/métodos , Humanos , Masculino , Esforço Físico/fisiologia , Torque
10.
J Sports Sci Med ; 15(2): 239-46, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27274660

RESUMO

Mountain endurance running has increased in popularity in recent years. Thus the aim of the present study was to determine if maximal oxygen uptake (VO2max) and energy cost of running (Cr) measured during level and uphill running are associated. Ten high level male endurance mountain runners performed three maximal oxygen uptake tests at three slope conditions (0, 12.5 and 25%). Metabolic data, step frequency (SF) and step length (SL) were recorded. No significant differences were found in VO2max (63.29 (±3.84), 63.97 (±3.54) and 63.70 (±3.58) mlO2/kg(-1)/min(-1)) or associated metabolic data at 0, 12.5 and 25% slope respectively. High intra-individual correlations were found between metabolic data measured in the three conditions. The energy cost of running was significantly different between slopes (0.192 (±0.01), 0.350 (±0.029) and 0.516 (±0.035) mlO2/kg(-1)/min(-1), p < 0.01), 0, 12.5 and 25% respectively. However, Cr0% was not correlated with either Cr25% or Cr12.5% (rs = 0.09 and rs = 0.10), in contrast, Cr25% and Cr12.5% were correlated (rs = 0.78). Step length was positively correlated with speed under the three slope conditions. Step frequency was significantly lower at 25 compared to 12.5 and 0% slope. We found that the maximum aerobic power did not differ between level and graded treadmill tests. However, the increase in Cr on the inclined versus level conditions varied between subjects. None of the measured anthropometric or kinematic variables could explain the higher increase in Cr of some subjects when running uphill. Thus, a short graded (5min at 12.5%) running test should be performed at a submaximal velocity (around 40% of level vVO2max) to enhance understanding of an endurance runner's uphill capability. Key pointsIn elite endurance mountain runners, there is no difference in VO2max values between level and uphill running.In a homogeneous group of mountain runners, uphill Cr is not associated with level Cr.To assess performance potential of endurance mountain runners, a standardized uphill running protocol should be performed.

11.
PLoS One ; 10(4): e0119719, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901576

RESUMO

Rapid force production is critical to improve performance and prevent injuries. However, changes in rate of force/torque development caused by the repetition of maximal contractions have received little attention. The aim of this study was to determine the relative influence of rate of torque development (RTD) and peak torque (T(peak)) on the overall performance (i.e. mean torque, T(mean)) decrease during repeated maximal contractions and to investigate the contribution of contractile and neural mechanisms to the alteration of the various mechanical variables. Eleven well-trained men performed 20 sets of 6-s isokinetic maximal knee extensions at 240° · s(-1), beginning every 30 seconds. RTD, T(peak) and T(mean) as well as the Rate of EMG Rise (RER), peak EMG (EMG(peak)) and mean EMG (EMG(mean)) of the vastus lateralis were monitored for each contraction. A wavelet transform was also performed on raw EMG signal for instant mean frequency (if(mean)) calculation. A neuromuscular testing procedure was carried out before and immediately after the fatiguing protocol including evoked RTD (eRTD) and maximal evoked torque (eT(peak)) induced by high frequency doublet (100 Hz). T(mean) decrease was correlated to RTD and T(peak) decrease (R(²) = 0.62; p<0.001; respectively ß=0.62 and ß=0.19). RER, eRTD and initial if(mean) (0-225 ms) decreased after 20 sets (respectively -21.1 ± 14.1, -25 ± 13%, and ~20%). RTD decrease was correlated to RER decrease (R(²) = 0.36; p<0.05). The eT(peak) decreased significantly after 20 sets (24 ± 5%; p<0.05) contrary to EMG(peak) (-3.2 ± 19.5 %; p=0.71). Our results show that reductions of RTD explained part of the alterations of the overall performance during repeated moderate velocity maximal exercise. The reductions of RTD were associated to an impairment of the ability of the central nervous system to maximally activate the muscle in the first milliseconds of the contraction.


Assuntos
Exercício Físico/fisiologia , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Torque , Adulto , Eletromiografia , Humanos , Masculino , Adulto Jovem
12.
J Electromyogr Kinesiol ; 19(6): 1100-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19138863

RESUMO

This study investigated changes in muscle activity when subjects are asked to maintain a constant cadence during an unloaded condition. Eleven subjects pedaled for five loaded conditions (220 W, 190 W, 160 W, 130 W, 100 W) and one unloaded condition at 80 rpm. Electromyographic (EMG) activity of six lower limb muscles, pedal forces and oxygen consumption were calculated for every condition. Muscle activity was defined by timing (EMG onset and offset) and level (integrated values of EMGrms calculated between EMG onset and EMG offset) of activation, while horizontal and vertical impulses were computed to characterize pedal forces. Muscle activity, pedal forces and oxygen consumption variables measured during the unloaded condition were compared with those extrapolated to 0 W from the loaded conditions, assuming a linear relationship. The muscle activity was changed during unloaded condition: EMG onset and/or offset of rectus femoris, biceps femoris, vastus medialis, and gluteus maximus muscles were delayed (p<0.05); iEMGrms values of rectus femoris, biceps femoris, gastrocnemius medialis and tibialis anterior muscles were higher than those extrapolated to 0 W (p<0.05). Vertical impulse over the extension phase was lower (p<0.05) while backward horizontal impulse was higher (p<0.05) during unloaded condition than those extrapolated to 0 W. Oxygen consumptions were higher during unloaded condition than extrapolated to 0 W (750+/-147 vs. 529+/-297 mLO(2) x min(-1); p<0.05). Timing of activation of rectus femoris and biceps femoris was dramatically modified to optimize pedal forces and maintain a constant cadence, while systematic changes in the activation level of the bi-articular muscles induced a relative increase in metabolic expenditure when pedaling during an unloaded condition.


Assuntos
Ciclismo/fisiologia , Perna (Membro)/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Esforço Físico/fisiologia , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Humanos , Masculino , Adulto Jovem
13.
Arch Phys Med Rehabil ; 89(8): 1594-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18674993

RESUMO

OBJECTIVE: To assess the relationship of maximal leg power and its corresponding determinants (eg, optimal velocity and optimal torque) measured during maximal voluntary knee extension to physical functional performance of older women. DESIGN: Descriptive. SETTING: Community retirement homes. PARTICIPANTS: Women (N=39) aged 72 to 96 years. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Volunteers performed in sitting position maximal knee extensions on an Ergopower dynamometer to calculate maximal leg power, optimal velocity, and optimal torque. Three standardized tests were also performed to evaluate physical performance: walking speed over 6m, time taken to rise 5 times from a chair, and time to climb 6 stairs. RESULTS: On multiple regression analysis, leg power (mean, 1.37+/-0.80 W/kg) significantly correlated with physical performance as measured by 6-m walking speed (mean, .85+/-.40 m/s), chair-stand time (mean, 16.3+/-7.7s), and stair-climb time (mean, 7+/-4s), describing 16% to 33% of the variance. Optimal velocity (mean, 1.79+/-1.20 rad/s) also significantly correlated with 6-m walking speed, chair-stand time, and stair-climb time, describing 46% to 89% of the variance. Optimal torque (50.8+/-16.9 Nm) did not correlate with physical performance. CONCLUSIONS: Maximal power and moreover optimal velocity were thus found to be determinants of physical performance, both appearing as significant mobility factors in older adults. This may provide more focus on velocity-oriented training as a means of improving functional status.


Assuntos
Idoso de 80 Anos ou mais/fisiologia , Idoso/fisiologia , Força Muscular/fisiologia , Aptidão Física/fisiologia , Atividades Cotidianas , Feminino , Humanos , Dinamômetro de Força Muscular , Valores de Referência , Análise de Regressão , Caminhada/fisiologia
14.
J Electromyogr Kinesiol ; 18(5): 866-78, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17507240

RESUMO

The value of electromyography (EMG) is sensitive to many physiological and non-physiological factors. The purpose of the present study was to determine if the torque-velocity test (T-V) can be used to normalize EMG signals into a framework of biological significance. Peak EMG amplitude of gluteus maximus (GMAX), vastus lateralis (VL), rectus femoris (RF), biceps femoris long head (BF), gastrocnemius medialis (GAS) and soleus (SOL) was calculated for nine subjects during isometric maximal voluntary contractions (IMVC) and torque-velocity bicycling tests (T-V). Then, the reference EMG signals obtained from IMVC and T-V bicycling tests were used to normalize the amplitude of the EMG signals collected for 15 different submaximal pedaling conditions. The results of this study showed that the repeatability of the measurements between IMVC (from 10% to 23%) and T-V (from 8% to 20%) was comparable. The amplitude of the peak EMG of VL was 99+/-43% higher (p<0.001) when measured during T-V. Moreover, the inter-individual variability of the EMG patterns calculated for submaximal cycling exercises differed significantly when using T-V bicycling normalization method (GMAX: 0.33+/-0.16 vs. 1.09+/-0.04, VL: 0.07+/-0.02 vs. 0.64+/-0.14, SOL: 0.07+/-0.03 vs. 1.00+/-0.07, RF: 1.21+/-0.20 vs. 0.92+/-0.13, BF: 1.47+/-0.47 vs. 0.84+/-0.11). It was concluded that T-V bicycling test offers the advantage to be less time and energy-consuming and to be as repeatable as IMVC tests to measure peak EMG amplitude. Furthermore, this normalization method avoids the impact of non-physiological factors on the amplitude of the EMG signals so that it allows quantifying better the activation level of lower limb muscles and the variability of the EMG patterns during submaximal bicycling exercises.


Assuntos
Algoritmos , Ciclismo/fisiologia , Eletromiografia/métodos , Extremidade Inferior/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Esforço Físico/fisiologia , Teste de Esforço , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
15.
Med Sci Sports Exerc ; 36(3): 498-503, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15076793

RESUMO

PURPOSE: The aims of this study are twofold: first, to analyze the influence of age, body mass, and lean leg volume (LLV) on short-term leg peak power (Pmax) of young females and males during growth using multilevel regression analysis and, second, to compare the regression results of boys and girls. METHODS: The individuals were 100 girls and 109 boys aged 7.5-17.5 yr old. Pmax, LLV, and mass were determined on two occasions using the cycling force-velocity test. The optimal force (Fopt) and pedaling frequency (Vopt) corresponded to the force and pedaling frequency at Pmax. RESULTS: It was observed that the increase of Pmax doesn't depend on gender until the age of 14. From that age, Pmax values are significantly lower in girls than in boys. In girls, LLV is the main predictor of Pmax variance (68%; P < 0.001), whereas in boys it is age (57%; P < 0.001). Results of ANCOVA were that for the same leg length (LL), Vopt is significantly (P < 0.001) higher in boys than in girls. It also indicated that for the same LLV, there are no significant (P > 0.05) gender differences of Fopt. CONCLUSION: These results illustrated that during the growth period, the increase of Pmax is significantly higher in boys than in girls. Qualitative muscular factors (Type II fiber, glycolytic ability, motor coordination, and motor unit activation) may account for the significantly higher Pmax production in boys than in girls. Precisely, the gender differences might be explained by neuromuscular determinants of contraction velocity. In conclusion, children should develop their neuromuscular determinants of contraction velocity rather than their lean leg volume.


Assuntos
Crescimento/fisiologia , Músculos/fisiologia , Análise e Desempenho de Tarefas , Adolescente , Criança , Estudos Transversais , Teste de Esforço/métodos , Feminino , Humanos , Masculino , Análise Multivariada , Fatores Sexuais
16.
Eur J Appl Physiol ; 91(1): 100-4, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12955523

RESUMO

The aim of the present study was to compare physiological data obtained during cycling using a noncircular "Harmonic" chainring versus a standard circular chainring over a range of speeds and slopes in endurance-trained cyclists. Thirteen male subnational cyclists (16-45 years) performed two maximal graded exercises on their own bicycle: one with a circular chainring, the other with a Harmonic chainring with the same gearwheel (52 teeth). The two chainrings were randomly assigned to avoid learning effects. The tests were carried out on a simulator. Speeds and/or slopes were increased every 2 min 30 s until exhaustion of the subject. Ventilation, oxygen uptake, carbon dioxide output, respiratory exchange ratio, and heart rate were continuously measured during the tests. Blood lactate concentration was measured during the last 30 s of each level. No significant difference was observed in any of the submaximal parameters measured during the tests ( P>0.05). Similarly, maximal values were not statistically different ( P>0.05). In conclusion, although the design of the Harmonic chainring was based on optimization analysis, comparison of the physiological response in this study did not translate into an advantage of the Harmonic over circular chainring during submaximal and maximal pedaling in trained cyclists.


Assuntos
Ciclismo/fisiologia , Exercício Físico/fisiologia , Adulto , Dióxido de Carbono/metabolismo , Frequência Cardíaca/fisiologia , Humanos , Ácido Láctico/sangue , Masculino , Consumo de Oxigênio/fisiologia , Troca Gasosa Pulmonar/fisiologia , Ventilação
17.
Med Sci Sports Exerc ; 35(8): 1436-40, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12900701

RESUMO

PURPOSE: The present study was undertaken to examine changes of cycling peak power (P(max)), optimal pedaling frequency (Vopt), and optimal pedaling force (Fopt) with age in subjects with the same lean leg volume (LLV), leg length (LL), and percentage body fat (%BF). METHOD: A total of 132 males aged 9.5-16.5 volunteered for this study. The population was divided into prepubertal (G1), pubertal (G2), and postpubertal (G3) groups. Within G1, G2, and G3, although the subjects were divided into three different age subgroups, there were no significant differences for LLV, %BF, and LL. RESULTS: Results showed that within G1, G2, and G3, P(max) increased significantly with age. Optimal velocity (Vopt) increased significantly with age in G1, whereas optimal force (Fopt) increased significantly with age into the other groups (G2 and G3). CONCLUSION: This study demonstrated that when anthropometric characteristics were controlled (LLV, LL, and %BF), P(max) and its two components (Vopt and Fopt) still increased with age. This indicates that other factors of qualitative nature have to be considered when determining P(max), Vopt, and Fopt.


Assuntos
Adolescente/fisiologia , Antropometria , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Fatores Etários , Ciclismo/fisiologia , Criança , Crescimento , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...