Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313030

RESUMO

Metabarcoding is a powerful tool, increasingly used in many disciplines of environmental sciences. However, to assign a taxon to a DNA sequence, bioinformaticians need to choose between different strategies or parameter values and these choices sometimes seem rather arbitrary. In this work, we present a case study on ITS2 and rbcL databases used to identify pollen collected by bees in Belgium. We blasted a random sample of sequences from the reference database against the remainder of the database using different strategies and compared the known taxonomy with the predicted one. This in silico cross-validation (CV) approach proved to be an easy yet powerful way to (1) assess the relative accuracy of taxonomic predictions, (2) define rules to discard dubious taxonomic assignments and (3) provide a more objective basis to choose the best strategy. We obtained the best results with the best blast hit (best bit score) rather than by selecting the majority taxon from the top 10 hits. The predictions were further improved by favouring the most frequent taxon among those with tied best bit scores. We obtained better results with databases containing the full sequences available on NCBI rather than restricting the sequences to the region amplified by the primers chosen in our study. Leaked CV showed that when the true sequence is present in the database, blast might still struggle to match the right taxon at the species level, particularly with rbcL. Classical 10-fold CV-where the true sequence is removed from the database-offers a different yet more realistic view of the true error rates. Taxonomic predictions with this approach worked well up to the genus level, particularly for ITS2 (5-7% of errors). Using a database containing only the local flora of Belgium did not improve the predictions up to the genus level for local species and made them worse for foreign species. At the species level, using a database containing exclusively local species improved the predictions for local species by ∼12% but the error rate remained rather high: 25% for ITS2 and 42% for rbcL. Foreign species performed worse even when using a world database (59-79% of errors). We used classification trees and GLMs to model the % of errors vs. identity and consensus scores and determine appropriate thresholds below which the taxonomic assignment should be discarded. This resulted in a significant reduction in prediction errors, but at the cost of a much higher proportion of unassigned sequences. Despite this stringent filtering, at least 1/5 sequences deemed suitable for species-level identification ultimately proved to be misidentified. An examination of the variability in prediction accuracy between plant families showed that rbcL outperformed ITS2 for only two of the 27 families examined, and that the % correct species-level assignments were much better for some families (e.g. 95% for Sapindaceae) than for others (e.g. 35% for Salicaceae).


Assuntos
Código de Barras de DNA Taxonômico , Pólen , Abelhas/genética , Animais , Código de Barras de DNA Taxonômico/métodos , Pólen/genética , Plantas , Bases de Dados Factuais , Bélgica
2.
PeerJ ; 10: e14093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193434

RESUMO

The spruce bark beetle, Ips typographus, is causing severe economic losses during epidemic phases triggered by droughts and/or windstorms. Sanitation felling and salvage logging are usually the most recommended strategies to limit the damages. However, any additional control method to limit the economic impact of an outbreak would be welcome. In this respect, the efficiency of pheromone trapping is still controversial or poorly documented. In this 2-year study (2020-2021), at the peak of a severe outbreak in Belgium, we quantified the wood volume and presence/absence of new attacks at 126 sites attacked during the previous year and within 100 m from the initial attack. Each site was randomly allocated to one of three treatments: (1) three crosstraps baited with pheromones, (2) one tree-trap baited with pheromones and treated with an insecticide and (3) control sites with no trapping device. The attacked trees of the previous year were all cut and removed before the start of the experiment and newly attacked trees were removed as they were detected. The trapping devices were only active during spring to target overwintering bark beetles that might have escaped the sanitation cuts and to limit the risk of attracting dispersing beetles from outside the patch during the summer. We found a strong decrease of the attacks relative to the previous year in all treatments, including the controls (more than 50% of the control sites had no new attacks). There was no relationship between the new attacks and the attacks of the previous year. In both years, new attacks were more frequent (presence/absence) in sites with crosstraps (95% Confidence Interval [56-84%] of the sites with new attacks) than in sites with a tree-trap (26-57% - p = 0.02) and to a lesser extent than in control sites (32-63%, p = 0.08). In 2020, the attacked volumes were slightly higher in sites with crosstraps (95% Confidence Interval [3.4-14.2 m³]) than in control sites (0.2-3.5 m³, p = 0.04) and no significant difference was found with tree-trap sites (1.1-6.2 m³, p = 0.38). In 2021, there were no significant differences between the volumes attacked in the control sites (1.8-9.4 m³), crosstraps sites (0.9-6.4 m³) and tree-trap sites (0-2.5 m³). Overall, we found no evidence in favor of the efficacy of pheromone trapping during spring to reduce economic damages at the local scale when combined with sanitation felling and during a severe outbreak. The use of baited crosstraps could even be hazardous as it seemed to increase the occurrence of new attacks probably by attracting bark beetles but failing to neutralize them.


Assuntos
Besouros , Picea , Gorgulhos , Animais , Feromônios/farmacologia , Árvores
3.
BMC Genom Data ; 23(1): 53, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804326

RESUMO

BACKGROUND: The DNA metabarcoding approach has become one of the most used techniques to study the taxa composition of various sample types. To deal with the high amount of data generated by the high-throughput sequencing process, a bioinformatics workflow is required and the QIIME2 platform has emerged as one of the most reliable and commonly used. However, only some pre-formatted reference databases dedicated to a few barcode sequences are available to assign taxonomy. If users want to develop a new custom reference database, several bottlenecks still need to be addressed and a detailed procedure explaining how to develop and format such a database is currently missing. In consequence, this work is aimed at presenting a detailed workflow explaining from start to finish how to develop such a curated reference database for any barcode sequence. RESULTS: We developed DB4Q2, a detailed workflow that allowed development of plant reference databases dedicated to ITS2 and rbcL, two commonly used barcode sequences in plant metabarcoding studies. This workflow addresses several of the main bottlenecks connected with the development of a curated reference database. The detailed and commented structure of DB4Q2 offers the possibility of developing reference databases even without extensive bioinformatics skills, and avoids 'black box' systems that are sometimes encountered. Some filtering steps have been included to discard presumably fungal and misidentified sequences. The flexible character of DB4Q2 allows several key sequence processing steps to be included or not, and downloading issues can be avoided. Benchmarking the databases developed using DB4Q2 revealed that they performed well compared to previously published reference datasets. CONCLUSION: This study presents DB4Q2, a detailed procedure to develop custom reference databases in order to carry out taxonomic analyses with QIIME2, but also with other bioinformatics platforms if desired. This work also provides ready-to-use plant ITS2 and rbcL databases for which the prediction accuracy has been assessed and compared to that of other published databases.


Assuntos
Código de Barras de DNA Taxonômico , DNA , Biologia Computacional/métodos , Código de Barras de DNA Taxonômico/métodos , Plantas , Fluxo de Trabalho
4.
Pest Manag Sci ; 77(1): 482-491, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32812675

RESUMO

BACKGROUND: The peach potato aphid, Myzus persicae, has developed resistance to many insecticides. In Belgium, M. persicae is one of the most common aphids in potato fields and one of the most effective virus vectors. We monitored resistance mutations to pyrethroids, carbamates and neonicotinoids and related these results to microsatellite genotyping to provide information to support the choice of management tactics. RESULTS: Most of the 254 aphids tested (97.6%) displayed at least one mutation conferring resistance to pyrethroids (L1014F, M918L and M918T) and 36.2% additionally carried the modified acetylcholinesterase (MACE) carbamates resistance making them resistant to two insecticide action modes. Ten mutation combinations were detected, two of which were frequent and a strong linkage was found between MACE and M918L mutations. The R81T mutation conferring resistance to neonicotinoids was not detected. Microsatellites highlighted a moderate genetic diversity [69 multilocus genotypes (MLG) detected], severe deviations from Hardy-Weinberg expectations, a highly significant excess of heterozygotes and linkage disequilibrium between all pairs of loci. A structuration of MLGs in association with the mutation combinations was observed. Genetic differentiation was mainly not significant between sampling locations and most MLGs were geographically widespread. These results suggest the likely coexistence of parthenogenesis (obligatory or facultative) and sexual reproduction, and the existence of 'old' parthenogenetic overwintering asexual lineages. CONCLUSION: The results of this monitoring at a regional scale provide useful information on insecticide resistance, genetic diversity and reproductive modes, and highlight the need to reduce the insecticide selection pressure and to implement mitigating techniques.


Assuntos
Afídeos , Inseticidas , Solanum tuberosum , Animais , Afídeos/genética , Bélgica , Genótipo , Resistência a Inseticidas/genética , Inseticidas/farmacologia
5.
Transbound Emerg Dis ; 66(1): 43-46, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30375175

RESUMO

We report the detection of Moku virus in honey bees (Apis mellifera) collected in 2017 from hives with a history of attacks by invasive Asian hornets (Vespa velutina nigrithorax) in Belgium. End 2016, Moku virus was reported in Asian hornets from the same area. In addition, the Moku virus was already present in historical samples of bees collected in 2013, that is, 2 years after the official first detection of Asian hornets in the same area of Belgium. This study suggests a spread of Moku virus to honey bees with possible consequences.


Assuntos
Abelhas/virologia , Vírus de Insetos/isolamento & purificação , Infecções por Vírus de RNA/veterinária , Animais , Bélgica/epidemiologia , Vírus de Insetos/genética , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Vespas/virologia
6.
BMC Plant Biol ; 18(1): 262, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382818

RESUMO

BACKGROUND: Celiac disease (CD) is an autoimmune disorder affecting genetically predisposed individuals whose dietary gluten proteins trigger an inflammatory reaction in the small intestine. Gluten is found in the seeds of cereals like bread wheat (Triticum aestivum ssp. aestivum) and spelt (Triticum aestivum ssp. spelta). The development of new varieties lacking immunogenic peptides is one of the strategies currently investigated to address the CD problem. Among gluten proteins, α-gliadins display the strongest immunogenicity with four main T-cell stimulatory epitopes. The objective of this work was to study the expression of α-gliadin epitopes related to CD in a wide collection of 121 spelt accessions (landraces and varieties, spring and winter accessions) from different provenances, and to analyze the correlation between the presence of epitope sequences in gDNA and their expression (cDNA). The effect of environmental factors (harvest year and N fertilization) on the epitope expression was also investigated. RESULTS: TaqMan probes targeting the canonical form of the epitopes were used to evaluate the epitope expression levels. Significant variations in the amount of epitope transcripts were identified between accessions and according to the provenances. Spring accessions showed a significantly higher immunogenicity than winter ones and no influence of spelt breeding on the epitope expression levels could be assessed when comparing landraces and varieties from Northwestern Europe. No correlation was observed between quantitative PCR results obtained from cDNA and gDNA for 45 accessions tested, stressing the need to use markers focusing on epitope transcripts rather than on genomic sequences. A relative stability of the amount of epitopes expressed by a same accession across four harvest years was detected. The fertilization strategy, evaluated through seven N fertilization modalities applied to two commercial spelt varieties, did not influence the epitope expression of the first variety, whereas it had a slight effect for the second one. CONCLUSIONS: The results obtained in this work showed that the CD-related epitope expression greatly fluctuated among the spelt accessions studied. This expression was not correlated to the epitope genomic occurrence and environmental factors had almost no influence on the amount of epitope transcripts.


Assuntos
Epitopos/genética , Gliadina/imunologia , Triticum/genética , Doença Celíaca/etiologia , Doença Celíaca/imunologia , Fertilizantes , Regulação da Expressão Gênica de Plantas , Gliadina/genética , Humanos , Nitrogênio/metabolismo , Reação em Cadeia da Polimerase/métodos , Triticum/imunologia
7.
Sci Rep ; 8(1): 7241, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739960

RESUMO

Synthetic fungicides are pesticides widely used in agriculture to control phytopathogenic fungi. The systemicity, persistency and intense application of some of these fungicides, such as boscalid, leads to long periods of exposure for honeybees via contaminated water, pollen and nectar. We exposed adult honeybees in the lab to food contaminated with boscalid for 33 days instead of the standard 10-day test. Most of the toxic effects were observed after 10 days. The median time to death (LT50) ranged from 24.9 days (lowest concentration) to 7.1 days (highest concentration) and was significantly shorter in all cases than with the control (32.0 days). The concentration and dietary doses of boscalid inducing 50% mortality (LC50 and LDD50, respectively) decreased strongly with the time of exposure: LC50 = 14,729 and 1,174 mg/l and LDD50 = 0.318 and 0.0301 mg bee-1 day-1 at days 8 and 25, respectively. We found evidence of reinforced toxicity when exposure is prolonged, but with an unusual pattern: no cumulative toxicity is observed until 17-18 days, when a point of inflexion appears that suggests a reduced capacity of bees to deal with the toxicant. Our results show the importance of time-to-death experiments rather than fixed-duration studies for evaluating chronic toxicity.


Assuntos
Abelhas/efeitos dos fármacos , Compostos de Bifenilo/toxicidade , Fungicidas Industriais/toxicidade , Niacinamida/análogos & derivados , Testes de Toxicidade Aguda/métodos , Animais , Abelhas/fisiologia , Dose Letal Mediana , Niacinamida/toxicidade , Fatores de Tempo
8.
Sci Rep ; 7(1): 3801, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630412

RESUMO

To evaluate the risks of pesticides for pollinators, we must not only evaluate their toxicity but also understand how pollinators are exposed to these xenobiotics in the field. We focused on this last point and modeled honey bee exposure to pesticides at the landscape level. Pollen pellet samples (n = 60) from 40 Belgian apiaries were collected from late July to October 2011 and underwent palynological and pesticide residue analyses. Areas of various crops around each apiary were measured at 4 spatial scales. The most frequently detected pesticides were the fungicides boscalid (n = 19, 31.7%) and pyrimethanil (n = 10, 16.7%) and the insecticide dimethoate (n = 10, 16.7%). We were able to predict exposure probability for boscalid and dimethoate by using broad indicators of cropping intensity, but it remained difficult to identify the precise source of contamination (e.g. specific crops in which the use of the pesticide is authorized). For pyrimethanil, we were not able to build any convincing landscape model that could explain the contamination. Our results, combined with the late sampling period, strongly suggest that pesticides applied to crops unattractive to pollinators, and therefore considered of no risk for them, may be sources of exposure through weeds, drift to neighboring plants, or succeeding crops.


Assuntos
Abelhas/metabolismo , Compostos de Bifenilo/efeitos adversos , Niacinamida/análogos & derivados , Praguicidas/efeitos adversos , Pirimidinas/efeitos adversos , Animais , Compostos de Bifenilo/farmacologia , Niacinamida/efeitos adversos , Niacinamida/farmacologia , Praguicidas/farmacologia , Pirimidinas/farmacologia
9.
PLoS One ; 9(7): e103073, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25048715

RESUMO

As in many other locations in the world, honeybee colony losses and disorders have increased in Belgium. Some of the symptoms observed rest unspecific and their causes remain unknown. The present study aims to determine the role of both pesticide exposure and virus load on the appraisal of unexplained honeybee colony disorders in field conditions. From July 2011 to May 2012, 330 colonies were monitored. Honeybees, wax, beebread and honey samples were collected. Morbidity and mortality information provided by beekeepers, colony clinical visits and availability of analytical matrix were used to form 2 groups: healthy colonies and colonies with disorders (n = 29, n = 25, respectively). Disorders included: (1) dead colonies or colonies in which part of the colony appeared dead, or had disappeared; (2) weak colonies; (3) queen loss; (4) problems linked to brood and not related to any known disease. Five common viruses and 99 pesticides (41 fungicides, 39 insecticides and synergist, 14 herbicides, 5 acaricides and metabolites) were quantified in the samples.The main symptoms observed in the group with disorders are linked to brood and queens. The viruses most frequently found are Black Queen Cell Virus, Sac Brood Virus, Deformed Wing Virus. No significant difference in virus load was observed between the two groups. Three acaricides, 5 insecticides and 13 fungicides were detected in the analysed samples. A significant correlation was found between the presence of fungicide residues and honeybee colony disorders. A significant positive link could also be established between the observation of disorder and the abundance of crop surface around the beehive. According to our results, the role of fungicides as a potential stressor for honeybee colonies should be further studied, either by their direct and/or indirect impacts on bees and bee colonies.


Assuntos
Colapso da Colônia/induzido quimicamente , Colapso da Colônia/virologia , Vírus de Insetos , Praguicidas/efeitos adversos , Animais , Abelhas , Bélgica , Produtos Agrícolas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...