Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Radiother Oncol ; 166: 154-161, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861267

RESUMO

BACKGROUND AND PURPOSE: Advances in high-dose-rate brachytherapy to treat prostate cancer hinge on improved accuracy in navigation and targeting while optimizing a streamlined workflow. Multimodal image registration and electromagnetic (EM) tracking are two technologies integrated into a prototype system in the early phase of clinical evaluation. We aim to report on the system's accuracy and workflow performance in support of tumor-targeted procedures. MATERIALS AND METHODS: In a prospective study, we evaluated the system in 43 consecutive procedures after clinical deployment. We measured workflow efficiency and EM catheter reconstruction accuracy. We also evaluated the system's MRI-TRUS registration accuracy with/without deformation, and with/without y-axis rotation for urethral alignment at initialization. RESULTS: The cohort included 32 focal brachytherapy and 11 integrated boost whole-gland implants. Mean procedure time excluding dose delivery was 38 min (range: 21-83) for focal, and 56 min (range: 38-89) for whole-gland implants; stable over time. EM catheter reconstructions achieved a mean difference between computed and measured free-length of 0.8 mm (SD 0.8, no corrections performed), and mean axial manual corrections 1.3 mm (SD 0.7). EM also enabled the clinical use of a non or partially visible catheter in 21% of procedures. Registration accuracy improved with y-axis rotation for urethral alignment at initialization and with the elastic registration (mTRE 3.42 mm, SD 1.49). CONCLUSION: The system supported tumor-targeting and was implemented with no demonstrable learning curve. EM reconstruction errors were small, correctable, and improved with calibration and control of external distortion sources; increasing confidence in the use of partially visible catheters. Image registration errors remained despite rotational alignment and deformation, and should be carefully considered.


Assuntos
Braquiterapia , Neoplasias da Próstata , Braquiterapia/métodos , Humanos , Masculino , Imagens de Fantasmas , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica
2.
J Endourol ; 36(3): 369-372, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34409850

RESUMO

Purpose: Although MRI/ultrasound fusion has been primarily used to assist in the diagnosis of prostate cancer, this technology can also be used to focally treat localized prostate cancer. We present one case of nanoparticle-directed ablation and two cases of cryoablation to focally treat prostate tumors. Patients and Methods: Three patients underwent MRI/ultrasound fusion transperineal prostate biopsies to confirm low- to intermediate-risk prostate cancer. The MRI lesions correlated with the biopsy-proven disease. Pelvic MRI segmentation was performed with DynaCAD 5.0 workstation. The MRI lesion including a 6 to 10 mm margin, prostate, bladder, urethra, urethral sphincter, rectum, and pubic bone were segmented. MRI/ultrasound fusion was performed with the novel Philips UroNav 4.0 system. Lesions were treated with focal nanoparticle ablation or focal cryoablation. Results: A 69-year-old man with a right posterior medial peripheral zone lesion positive for Gleason grade group (GG)3 cancer was treated with focal nanoparticle ablation. The UroNav 4.0 system reported 100% ablation of the segmented tumor and 94% of the 6 to 10 mm margin at the end of the case. A 68-year-old man with a left anterior fibromuscular stroma lesion positive for Gleason GG2 cancer and a 71-year-old man with a right peripheral zone posterior lateral lesion positive for Gleason GG1 cancer were treated with focal cryoablation. The UroNav 4.0 system reported 100% ablation of the segmented tumor and 82% of the 6 to 10 mm margin at the end of the case. Conclusion: Observation of the prostate tumor(s), surrounding critical structures, and pelvis in three dimensions (3D), along with the anticipated ablation zone, is one of the challenges of pelvic surgery and percutaneous ablation. The DynaCAD 5.0 Urology system can create an auto-segmented 3D rendering of critical structures and the tumor(s), as well as observation and quantification of the anticipated ablation coverage, to facilitate preoperative planning of needle placement. ClinicalTrials.gov nos.: NCT02680535 and NCT04656678.


Assuntos
Ablação por Cateter , Criocirurgia , Nanopartículas , Neoplasias da Próstata , Idoso , Humanos , Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Margens de Excisão , Pelve/patologia , Próstata/diagnóstico por imagem , Próstata/patologia , Próstata/cirurgia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Tecnologia
3.
Med Phys ; 43(10): 5288, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27782713

RESUMO

PURPOSE: The development of MR-guided high dose rate (HDR) brachytherapy is under investigation due to the excellent tumor and organs at risk visualization of MRI. However, MR-based localization of needles (including catheters or tubes) has inherently a low update rate and the required image interpretation can be hampered by signal voids arising from blood vessels or calcifications limiting the precision of the needle guidance and reconstruction. In this paper, a new needle tracking prototype is investigated using fiber Bragg gratings (FBG)-based sensing: this prototype involves a MR-compatible stylet composed of three optic fibers with nine sets of embedded FBG sensors each. This stylet can be inserted into brachytherapy needles and allows a fast measurement of the needle deflection. This study aims to assess the potential of FBG-based sensing for real-time needle (including catheter or tube) tracking during MR-guided intervention. METHODS: First, the MR compatibility of FBG-based sensing and its accuracy was evaluated. Different known needle deflections were measured using FBG-based sensing during simultaneous MR-imaging. Then, a needle tracking procedure using FBG-based sensing was proposed. This procedure involved a MR-based calibration of the FBG-based system performed prior to the interventional procedure. The needle tracking system was assessed in an experiment with a moving phantom during MR imaging. The FBG-based system was quantified by comparing the gold-standard shapes, the shape manually segmented on MRI and the FBG-based measurements. RESULTS: The evaluation of the MR compatibility of FBG-based sensing and its accuracy shows that the needle deflection could be measured with an accuracy of 0.27 mm on average. Besides, the FBG-based measurements were comparable to the uncertainty of MR-based measurements estimated at half the voxel size in the MR image. Finally, the mean(standard deviation) Euclidean distance between MR- and FBG-based needle position measurements was equal to 0.79 mm(0.37 mm). The update rate and latency of the FBG-based needle position measurement were 100 and 300 ms, respectively. CONCLUSIONS: The FBG-based needle tracking procedure proposed in this paper is able to determine the position of the complete needle, under MR-imaging, with better accuracy and precision, higher update rate, and lower latency compared to current MR-based needle localization methods. This system would be eligible for MR-guided brachytherapy, in particular, for an improved needle guidance and reconstruction.


Assuntos
Braquiterapia/instrumentação , Imageamento por Ressonância Magnética , Agulhas , Radioterapia Guiada por Imagem/instrumentação , Artefatos , Humanos , Imageamento Tridimensional , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia
4.
J Contemp Brachytherapy ; 7(4): 280-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26622231

RESUMO

PURPOSE: Accurate insertion and overall needle positioning are key requirements for effective brachytherapy treatments. This work aims at demonstrating the accuracy performance and the suitability of the Aurora(®) V1 Planar Field Generator (PFG) electromagnetic tracking system (EMTS) for real-time treatment assistance in interstitial brachytherapy procedures. MATERIAL AND METHODS: The system's performance was characterized in two distinct studies. First, in an environment free of EM disturbance, the boundaries of the detection volume of the EMTS were characterized and a tracking error analysis was performed. Secondly, a distortion analysis was conducted as a means of assessing the tracking accuracy performance of the system in the presence of potential EM disturbance generated by the proximity of standard brachytherapy components. RESULTS: The tracking accuracy experiments showed that positional errors were typically 2 ± 1 mm in a zone restricted to the first 30 cm of the detection volume. However, at the edges of the detection volume, sensor position errors of up to 16 mm were recorded. On the other hand, orientation errors remained low at ± 2° for most of the measurements. The EM distortion analysis showed that the presence of typical brachytherapy components in vicinity of the EMTS had little influence on tracking accuracy. Position errors of less than 1 mm were recorded with all components except with a metallic arm support, which induced a mean absolute error of approximately 1.4 mm when located 10 cm away from the needle sensor. CONCLUSIONS: The Aurora(®) V1 PFG EMTS possesses a great potential for real-time treatment assistance in general interstitial brachytherapy. In view of our experimental results, we however recommend that the needle axis remains as parallel as possible to the generator surface during treatment and that the tracking zone be restricted to the first 30 cm from the generator surface.

5.
Magn Reson Med ; 73(4): 1623-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24844947

RESUMO

PURPOSE: High-resolution myocardial perfusion analysis allows for preserving spatial information with excellent sensitivity for subendocardial ischemia detection. However, it suffers from low signal-to-noise ratio. Commonly, spatial averaging is used to increase signal-to-noise ratio. This bears the risk of losing information about the extent, localization and transmurality of ischemia. This study investigates spatial-averaging effects on perfusion-estimates accuracy. METHODS: Perfusion data were obtained from patients and healthy volunteers. Spatial averaging was performed on voxel-based data in transmural and angular direction to reduce resolution to 50, 20, and 10% of its original value. Fit quality assessment method is used to measure the fraction of modeled information and remaining unmodeled information in the residuals. RESULTS: Fraction of modeled information decreased in patients as resolution reduced. This decrease was more evident for Fermi and exponential in transmural direction. Fermi and exponential showed significant difference at 50% resolution (Fermi P < 0.001, exponential P =0.0014). No significant differences were observed for autoregressive-moving-average model (P = 0.081). At full resolution, autoregressive-moving-average model has the lowest fraction of residual information (0.3). Differences were observed comparing ischemic regions perfusion-estimates coefficient of variation at transmural and angular direction. CONCLUSION: Angular averaging preserves more information compared to transmural averaging. Reducing resolution level below 50% at transmural and 20% at angular direction results in losing information about transmural perfusion differences. Maximum voxel size of 2 × 2 mm(2) is necessary to avoid loss of physiological information due to spatial averaging.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/fisiopatologia , Imagem de Perfusão do Miocárdio/métodos , Algoritmos , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espaço-Temporal
6.
J Cardiovasc Magn Reson ; 16: 82, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25315438

RESUMO

BACKGROUND: Cardiovascular Magnetic Resonance (CMR) myocardial perfusion imaging has the potential to evolve into a method allowing full quantification of myocardial blood flow (MBF) in clinical routine. Multiple quantification pathways have been proposed. However at present it remains unclear which algorithm is the most accurate. An isolated perfused, magnetic resonance (MR) compatible pig heart model allows very accurate titration of MBF and in combination with high-resolution assessment of fluorescently-labeled microspheres represents a near optimal platform for validation. We sought to investigate which algorithm is most suited to quantify myocardial perfusion by CMR at 1.5 and 3 Tesla using state of the art CMR perfusion techniques and quantification algorithms. METHODS: First-pass perfusion CMR was performed in an MR compatible blood perfused pig heart model. We acquired perfusion images at physiological flow ("rest"), reduced flow ("ischaemia") and during adenosine-induced hyperaemia ("hyperaemia") as well as during coronary occlusion. Perfusion CMR was performed at 1.5 Tesla (n = 4 animals) and at 3 Tesla (n = 4 animals). Fluorescently-labeled microspheres and externally controlled coronary blood flow served as reference standards for comparison of different quantification strategies, namely Fermi function deconvolution (Fermi), autoregressive moving average modelling (ARMA), exponential basis deconvolution (Exponential) and B-spline basis deconvolution (B-spline). RESULTS: All CMR derived MBF estimates significantly correlated with microsphere results. The best correlation was achieved with Fermi function deconvolution both at 1.5 Tesla (r = 0.93, p < 0.001) and at 3 Tesla (r = 0.9, p < 0.001). Fermi correlated significantly better with the microspheres than all other methods at 3 Tesla (p < 0.002). B-spline performed worse than Fermi and Exponential at 1.5 Tesla and showed the weakest correlation to microspheres (r = 0.74, p < 0.001). All other comparisons were not significant. At 3 Tesla exponential deconvolution performed worst (r = 0.49, p < 0.001). CONCLUSIONS: CMR derived quantitative blood flow estimates correlate with true myocardial blood flow in a controlled animal model. Amongst the different techniques, Fermi function deconvolution was the most accurate technique at both field strengths. Perfusion CMR based on Fermi function deconvolution may therefore emerge as a useful clinical tool providing accurate quantitative blood flow assessment.


Assuntos
Circulação Coronária , Corantes Fluorescentes , Imageamento por Ressonância Magnética/métodos , Microbolhas , Isquemia Miocárdica/diagnóstico , Imagem de Perfusão do Miocárdio/métodos , Algoritmos , Animais , Velocidade do Fluxo Sanguíneo , Meios de Contraste , Oclusão Coronária/diagnóstico , Oclusão Coronária/fisiopatologia , Modelos Animais de Doenças , Hiperemia/diagnóstico , Hiperemia/fisiopatologia , Interpretação de Imagem Assistida por Computador , Técnicas In Vitro , Isquemia Miocárdica/fisiopatologia , Compostos Organometálicos , Perfusão , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Suínos , Fatores de Tempo
7.
IEEE Trans Biomed Eng ; 61(9): 2499-2506, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24833413

RESUMO

First-pass perfusion cardiac magnetic resonance(CMR) allows the quantitative assessment of myocardial blood flow(MBF). However, flow estimates are sensitive to the delay between the arterial and myocardial tissue tracer arrival time (tOnset) and the accurate estimation of MBF relies on the precise identification of tOnset . The aim of this study is to assess the sensitivity of the quantification process to tOnset at voxel level. Perfusion data were obtained from series of simulated data, a hardware perfusion phantom, and patients. Fermi deconvolution has been used for analysis. A novel algorithm, based on sequential deconvolution,which minimizes the error between myocardial curves and fitted curves obtained after deconvolution, has been used to identify the optimal tOnset for each region. Voxel-wise analysis showed to be more sensitive to tOnset compared to segmental analysis. The automated detection of the tOnset allowed a net improvement of the accuracy of MBF quantification and in patients the identification of perfusion abnormalities in territories that were missed when a constant user-selected tOnset was used. Our results indicate that high-resolution MBF quantification should be performed with optimized tOnset values at voxel level.


Assuntos
Técnicas de Imagem Cardíaca/métodos , Meios de Contraste/farmacocinética , Circulação Coronária/fisiologia , Angiografia por Ressonância Magnética/métodos , Imagem de Perfusão/métodos , Estudos de Casos e Controles , Simulação por Computador , Doença da Artéria Coronariana/fisiopatologia , Humanos , Imagens de Fantasmas
8.
J Magn Reson Imaging ; 39(4): 895-900, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24123369

RESUMO

PURPOSE: To determine sex-specific reference values for left ventricular (LV) volumes, mass, and ejection fraction (EF) in healthy adults using computer-aided analysis and to examine the effect of age on LV parameters. MATERIALS AND METHODS: We examined data from 1494 members of the Framingham Heart Study Offspring cohort, obtained using short-axis stack cine SSFP CMR, identified a healthy reference group (without cardiovascular disease, hypertension, or LV wall motion abnormality) and determined sex-specific upper 95th percentile thresholds for LV volumes and mass, and lower 5th percentile thresholds for EF using computer-assisted border detection. In secondary analyses, we stratified participants by age-decade and tested for linear trend across age groups. RESULTS: The reference group comprised 685 adults (423F; 61 ± 9 years). Men had greater LV volumes and mass, before and after indexation to common measures of body size (all P = 0.001). Women had greater EF (73 ± 6 versus 71 ± 6%; P = 0.0002). LV volumes decreased with greater age in both sexes, even after indexation. Indexed LV mass did not vary with age. LV EF and concentricity increased with greater age in both sexes. CONCLUSION: We present CMR-derived LV reference values. There are significant age and sex differences in LV volumes, EF, and geometry, whereas mass differs between sexes but not age groups.


Assuntos
Envelhecimento/fisiologia , Ventrículos do Coração/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética/métodos , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Med Biol Eng Comput ; 51(11): 1271-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23892889

RESUMO

Coronary artery disease, CAD, is associated with both narrowing of the epicardial coronary arteries and microvascular disease, thereby limiting coronary flow and myocardial perfusion. CAD accounts for almost 2 million deaths within the European Union on an annual basis. In this paper, we review the physiological and pathophysiological processes underlying clinical decision making in coronary disease as well as the models for interpretation of the underlying physiological mechanisms. Presently, clinical decision making is based on non-invasive magnetic resonance imaging, MRI, of myocardial perfusion and invasive coronary hemodynamic measurements of coronary pressure and Doppler flow velocity signals obtained during catheterization. Within the euHeart project, several innovations have been developed and applied to improve diagnosis-based understanding of the underlying biophysical processes. Specifically, MRI perfusion data interpretation has been advanced by the gradientogram, a novel graphical representation of the spatiotemporal myocardial perfusion gradient. For hemodynamic data, functional indices of coronary stenosis severity that do not depend on maximal vasodilation are proposed and the Valsalva maneuver for indicating the extravascular resistance component of the coronary circulation has been introduced. Complementary to these advances, model innovation has been directed to the porous elastic model coupled to a one-dimensional model of the epicardial arteries. The importance of model development is related to the integration of information from different modalities, which in isolation often result in conflicting treatment recommendations.


Assuntos
Doença da Artéria Coronariana/diagnóstico , Técnicas de Diagnóstico Cardiovascular , Modelos Cardiovasculares , Pressão Arterial , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/terapia , Bases de Dados Factuais , Ecocardiografia Doppler , Humanos , Imageamento por Ressonância Magnética , Imagem de Perfusão do Miocárdio , Intervenção Coronária Percutânea
10.
JACC Cardiovasc Imaging ; 6(5): 600-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23582358

RESUMO

OBJECTIVES: This study sought to test the hypothesis that transmural perfusion gradients (TPG) on adenosine stress myocardial perfusion cardiac magnetic resonance (CMR) predict hemodynamically significant coronary artery disease (CAD) as defined by fractional flow reserve (FFR). BACKGROUND: Myocardial ischemia affects the subendocardial layers of the left ventricular myocardium earlier and more severely than the outer layers, and the identification of TPG should be sensitive and specific for the diagnosis of CAD. Previous studies have shown that high spatial resolution myocardial perfusion CMR allows quantitation of TPG between the subendocardium and the subepicardium. METHODS: Sixty-seven patients (53 men, age 61 ± 9 years) underwent coronary angiography and high-resolution (1.2 × 1.2-mm in-plane) adenosine stress perfusion CMR at 3.0-T. TPG was calculated for 3 coronary territories. Visual analysis was performed to identify myocardial ischemia. FFR was measured in all vessels with ≥50% severity stenosis. FFR <0.8 was considered hemodynamically significant. In a training group of 30 patients, the optimal threshold of TPG to detect significant CAD was determined (Group 1). This threshold was then tested prospectively in the remaining 37 patients (Group 2). RESULTS: In Group 1, a 20% TPG provided the best diagnostic threshold on both per-segment and per-patient analysis. Applied to Group 2, this threshold yielded a sensitivity of 0.78, specificity of 0.94, and area under the curve of 0.86 for the detection of CAD in a per-segment analysis and of 0.89, 0.83, and 0.86 in a per-patient analysis, respectively. TPG had a similar diagnostic accuracy to visual assessment. Linear regression analysis showed a relationship between TPG and FFR values, with r = 0.63 (p < 0.001). CONCLUSIONS: The quantitative analysis of transmural perfusion gradients on high-resolution myocardial perfusion CMR accurately predicts hemodynamically significant CAD as defined by FFR. A TPG diagnostic threshold of 20% is as accurate as visual assessment.


Assuntos
Estenose Coronária/diagnóstico , Vasos Coronários/fisiopatologia , Reserva Fracionada de Fluxo Miocárdico , Imageamento por Ressonância Magnética , Imagem de Perfusão do Miocárdio/métodos , Adenosina , Idoso , Distribuição de Qui-Quadrado , Angiografia Coronária , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Feminino , Hemodinâmica , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Curva ROC , Estudos Retrospectivos , Índice de Gravidade de Doença , Vasodilatadores
11.
Magn Reson Med ; 69(3): 698-707, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22532435

RESUMO

The aim of this article is to describe a novel hardware perfusion phantom that simulates myocardial first-pass perfusion allowing comparisons between different MR techniques and validation of the results against a true gold standard. MR perfusion images were acquired at different myocardial perfusion rates and variable doses of gadolinium and cardiac output. The system proved to be sensitive to controlled variations of myocardial perfusion rate, contrast agent dose, and cardiac output. It produced distinct signal intensity curves for perfusion rates ranging from 1 to 10 mL/mL/min. Quantification of myocardial blood flow by signal deconvolution techniques provided accurate measurements of perfusion. The phantom also proved to be very reproducible between different sessions and different operators. This novel hardware perfusion phantom system allows reliable, reproducible, and efficient simulation of myocardial first-pass MR perfusion. Direct comparison between the results of image-based quantification and reference values of flow and myocardial perfusion will allow development and validation of accurate quantification methods.


Assuntos
Angiografia por Ressonância Magnética/instrumentação , Imagem Cinética por Ressonância Magnética/instrumentação , Imagem de Perfusão do Miocárdio/instrumentação , Imagens de Fantasmas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
JACC Cardiovasc Imaging ; 5(11): 1115-23, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23153911

RESUMO

OBJECTIVES: The goal of this study was to assess the relationship of left ventricular (LV) trabeculae and papillary muscles (TPM) with clinical characteristics in a community-based, free-living adult cohort and to determine the effect of TPM on quantitative measures of LV volume, mass, and ejection fraction (EF). BACKGROUND: Hypertrabeculation has been associated with adverse cardiovascular events, but the distribution and clinical correlates of the volume and mass of the TPM in a normal left ventricle have not been well characterized. METHODS: Short-axis cine cardiac magnetic resonance images, obtained using a steady-state free precession sequence from 1,494 members of the Framingham Heart Study Offspring cohort, were analyzed with software that automatically segments TPM. Absolute TPM volume, TPM as a fraction of end-diastolic volume (EDV) (TPM/EDV), and TPM mass as a fraction of LV mass were determined in all offspring and in a referent group of offspring free of clinical cardiovascular disease and hypertension. RESULTS: In the referent group (mean age 61 ± 9 years; 262 men and 423 women), mean TPM was 23 ± 3% of LV EDV in both sexes (p = 0.9). TPM/EDV decreased with age (p < 0.02) but was not associated with body mass index. TPM mass as a fraction of LV mass was inversely correlated with age (p < 0.0001), body mass index (p < 0.018), and systolic blood pressure (p < 0.0001). Among all 1,494 participants (699 men), LV volumes decreased 23%, LV mass increased 28%, and EF increased by 7.5 EF units (p < 0.0001) when TPM were considered myocardial mass rather than part of the LV blood pool. CONCLUSIONS: Global cardiac magnetic resonance LV parameters were significantly affected by whether TPM was considered as part of the LV blood pool or as part of LV mass. Our cross-sectional data from a healthy referent group of adults free of clinical cardiovascular disease demonstrated that TPM/EDV decreases with increasing age in both sexes but is not related to hypertension or obesity.


Assuntos
Ventrículos do Coração/anatomia & histologia , Imagem Cinética por Ressonância Magnética , Músculos Papilares/anatomia & histologia , Músculos Papilares/fisiologia , Função Ventricular Esquerda , Fatores Etários , Idoso , Pressão Sanguínea , Índice de Massa Corporal , Estudos Transversais , Feminino , Humanos , Hipertensão/patologia , Hipertensão/fisiopatologia , Interpretação de Imagem Assistida por Computador , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes , Valores de Referência , Reprodutibilidade dos Testes , Fatores Sexuais , Volume Sistólico , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
13.
IEEE Trans Biomed Eng ; 59(7): 2060-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22575632

RESUMO

We have evaluated the use of deconvolution using an exponential approximation basis for the quantification of myocardial blood flow from perfusion cardiovascular magnetic resonance. Our experiments, based on simulated signal intensity curves, phantom acquisitions, and clinical image data, indicate that exponential deconvolution allows for accurate quantification of myocardial blood flow. Together with automated respiratory motion correction myocardial contour delineation, the exponential deconvolution enables efficient and reproducible quantification of myocardial blood flow in clinical routine.


Assuntos
Circulação Coronária/fisiologia , Hemodinâmica/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Modelos Cardiovasculares , Algoritmos , Imagens de Fantasmas
14.
Magn Reson Med ; 68(6): 1994-2004, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22354744

RESUMO

The purpose of this study is to enable high spatial resolution voxel-wise quantitative analysis of myocardial perfusion in dynamic contrast-enhanced cardiovascular MR, in particular by finding the most favorable quantification algorithm in this context. Four deconvolution algorithms--Fermi function modeling, deconvolution using B-spline basis, deconvolution using exponential basis, and autoregressive moving average modeling--were tested to calculate voxel-wise perfusion estimates. The algorithms were developed on synthetic data and validated against a true gold-standard using a hardware perfusion phantom. The accuracy of each method was assessed for different levels of spatial averaging and perfusion rate. Finally, voxel-wise analysis was used to generate high resolution perfusion maps on real data acquired from five patients with suspected coronary artery disease and two healthy volunteers. On both synthetic and perfusion phantom data, the B-spline method had the highest error in estimation of myocardial blood flow. The autoregressive moving average modeling and exponential methods gave accurate estimates of myocardial blood flow. The Fermi model was the most robust method to noise. Both simulations and maps in the patients and hardware phantom showed that voxel-wise quantification of myocardium perfusion is feasible and can be used to detect abnormal regions.


Assuntos
Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/fisiopatologia , Circulação Coronária , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Velocidade do Fluxo Sanguíneo , Estudos de Viabilidade , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Magn Reson Med ; 67(5): 1478-86, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22021128

RESUMO

Quantitative analysis of short-axis functional cardiac magnetic resonance images can be performed using automatic contour detection methods. The resulting myocardial contours must be reviewed and possibly corrected, which can be time-consuming, particularly when performed across all cardiac phases. We quantified the impact of manual contour corrections on both analysis time and quantitative measurements obtained from left ventricular short-axis cine images acquired from 1555 participants of the Framingham Heart Study Offspring cohort using computer-aided contour detection methods. The total analysis time for a single case was 7.6 ± 1.7 min for an average of 221 ± 36 myocardial contours per participant. This included 4.8 ± 1.6 min for manual contour correction of 2% of all automatically detected endocardial contours and 8% of all automatically detected epicardial contours. However, the impact of these corrections on global left ventricular parameters was limited, introducing differences of 0.4 ± 4.1 mL for end-diastolic volume, -0.3 ± 2.9 mL for end-systolic volume, 0.7 ± 3.1 mL for stroke volume, and 0.3 ± 1.8% for ejection fraction. We conclude that left ventricular functional parameters can be obtained under 5 min from short-axis functional cardiac magnetic resonance images using automatic contour detection methods. Manual correction more than doubles analysis time, with minimal impact on left ventricular volumes and ejection fraction.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Disfunção Ventricular Esquerda/diagnóstico , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Volume Sistólico
16.
Med Image Comput Comput Assist Interv ; 11(Pt 1): 178-85, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18979746

RESUMO

A typical Cardiac Magnetic Resonance (CMR) examination includes acquisition of a sequence of short-axis (SA) and long-axis (LA) images covering the cardiac cycle. Quantitative analysis of the heart function requires segmentation of the left ventricle (LV) SA images, while segmented LA views allow more accurate estimation of the basal slice and can be used for slice registration. Since manual segmentation of CMR images is very tedious and time-consuming, its automation is highly required. In this paper, we propose a fully automatic 2D method for segmenting LV consecutively in LA and SA images. The approach was validated on 35 patients giving mean segmentation error smaller than one pixel, both for LA and SA, and accurate LV volume measurements.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Disfunção Ventricular Esquerda/diagnóstico , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
IEEE Trans Med Imaging ; 25(11): 1472-82, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17117776

RESUMO

We have developed a method for automatic contour propagation in cine cardiac magnetic resonance images. The method consists of a new active contour model that tries to maintain a constant contour environment by matching gray values in profiles perpendicular to the contour. Consequently, the contours should maintain a constant position with respect to neighboring anatomical structures, such that the resulting contours reflect the preferences of the user. This is particularly important in cine cardiac magnetic resonance images because local image features do not describe the desired contours near the papillary muscle. The accuracy of the propagation result is influenced by several parameters. Because the optimal setting of these parameters is application dependent, we describe how to use full factorial experiments to optimize the parameter setting. We have applied our method to cine cardiac magnetic resonance image sequences from the long axis two-chamber view, the long axis four-chamber view, and the short axis view. We performed our optimization procedure for each contour in each view. Next, we performed an extensive clinical validation of our method on 69 short axis data sets and 38 long axis data sets. In the optimal parameter setting, our propagation method proved to be fast, robust, and accurate. The resulting cardiac contours are positioned within the interobserver ranges of manual segmentation. Consequently, the resulting contours can be used to accurately determine physiological parameters such as stroke volume and ejection fraction.


Assuntos
Coração/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Algoritmos , Inteligência Artificial , Armazenamento e Recuperação da Informação/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...