Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 144(2): 470-481, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31158401

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common, complex, and highly heritable inflammatory skin disease. Genome-wide association studies offer opportunities to identify molecular targets for drug development. A risk locus on chromosome 11q13.5 lies between 2 candidate genes, EMSY and LRRC32 (leucine-rich repeat-containing 32) but the functional mechanisms affecting risk of AD remain unclear. OBJECTIVES: We sought to apply a combination of genomic and molecular analytic techniques to investigate which genes are responsible for genetic risk at this locus and to define mechanisms contributing to atopic skin disease. METHODS: We used interrogation of available genomic and chromosome conformation data in keratinocytes, small interfering RNA (siRNA)-mediated knockdown in skin organotypic culture and functional assessment of barrier parameters, mass spectrometric global proteomic analysis and quantitative lipid analysis, electron microscopy of organotypic skin, and immunohistochemistry of human skin samples. RESULTS: Genomic data indicate active promoters in the genome-wide association study locus and upstream of EMSY; EMSY, LRRC32, and intergenic variants all appear to be within a single topologically associating domain. siRNA-knockdown of EMSY in organotypic culture leads to enhanced development of barrier function, reflecting increased expression of structural and functional proteins, including filaggrin and filaggrin-2, as well as long-chain ceramides. Conversely, overexpression of EMSY in keratinocytes leads to a reduction in markers of barrier formation. Skin biopsy samples from patients with AD show greater EMSY staining in the nucleus, which is consistent with an increased functional effect of this transcriptional control protein. CONCLUSION: Our findings demonstrate an important role for EMSY in transcriptional regulation and skin barrier formation, supporting EMSY inhibition as a therapeutic approach.


Assuntos
Dermatite Atópica/imunologia , Regulação da Expressão Gênica/imunologia , Proteínas de Neoplasias/imunologia , Proteínas Nucleares/imunologia , Proteínas Repressoras/imunologia , Pele/imunologia , Transcrição Gênica/imunologia , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 11/imunologia , Dermatite Atópica/genética , Dermatite Atópica/patologia , Feminino , Proteínas Filagrinas , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Pele/patologia
2.
Mol Biol Cell ; 29(2): 96-110, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29167380

RESUMO

Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1 Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers.


Assuntos
Proteínas de Drosophila/genética , Atrofia Muscular Espinal/genética , Proteínas de Ligação a RNA/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Drosophila , Homozigoto , Humanos , Camundongos , Neurônios Motores/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Polimerização
3.
J Proteomics ; 88: 92-103, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23501838

RESUMO

Mass spectrometry, in the past five years, has increased in speed, accuracy and use. With the ability of the mass spectrometers to identify increasing numbers of proteins the identification of undesirable peptides (those not from the protein sample) has also increased. Most undesirable contaminants originate in the laboratory and come from either the user (e.g. keratin from hair and skin), or from reagents (e.g. trypsin), that are required to prepare samples for analysis. We found that a significant amount of MS instrument time was spent sequencing peptides from abundant contaminant proteins. While completely eliminating non-specific protein contamination is not feasible, it is possible to reduce the sequencing of these contaminants. For example, exclusion lists can provide a list of masses that can be used to instruct the mass spectrometer to 'ignore' the undesired contaminant peptides in the list. We empirically generated be-spoke exclusion lists for several model organisms (Homo sapiens, Caenorhabditis elegans, Saccharomyces cerevisiae and Xenopus laevis), utilising information from over 500 mass spectrometry runs and cumulative analysis of these data. Here we show that by employing these empirically generated lists, it was possible to reduce the time spent analysing contaminating peptides in a given sample thereby facilitating more efficient data acquisition and analysis. BIOLOGICAL SIGNIFICANCE: Given the current efficacy of the Mass Spectrometry instrumentation, the utilisation of data from ~500 mass spec runs to generate be-spoke exclusion lists and optimise data acquisition is the significance of this manuscript.


Assuntos
Proteínas de Caenorhabditis elegans/análise , Espectrometria de Massas/métodos , Peptídeos/análise , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Xenopus/análise , Animais , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/química , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Peptídeos/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Xenopus/química , Xenopus laevis
4.
J Psychiatr Res ; 43(13): 1095-105, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19394958

RESUMO

Insulin-degrading enzyme (IDE) is a neutral thiol metalloprotease, which cleaves insulin with high specificity. Additionally, IDE hydrolyzes Abeta, glucagon, IGF I and II, and beta-endorphin. We studied the expression of IDE protein in postmortem brains of patients with schizophrenia and controls because: (1) the gene encoding IDE is located on chromosome 10q23-q25, a gene locus linked to schizophrenia; (2) insulin resistance with brain insulin receptor deficits/receptor dysfunction was reported in schizophrenia; (3) the enzyme cleaves IGF-I and IGF-II which are implicated in the pathophysiology of the disease; and (4) brain gamma-endorphin levels, liberated from beta-endorphin exclusively by IDE, have been reported to be altered in schizophrenia. We counted the number of IDE immunoreactive neurons in the dorsolateral prefrontal cortex, the hypothalamic paraventricular and supraoptic nuclei, and the basal nucleus of Meynert of 14 patients with schizophrenia and 14 matched control cases. Patients had long-term haloperidol treatment. In addition, relative concentrations of IDE protein in the dorsolateral prefrontal cortex were estimated by Western blot analysis. There was a significantly reduced number of IDE expressing neurons and IDE protein content in the left and right dorsolateral prefrontal cortex in schizophrenia compared with controls, but not in other brain areas investigated. Results of our studies on the influence of haloperidol on IDE mRNA expression in SHSY5Y neuroblastoma cells, as well as the effect of long-term treatment with haloperidol on the number of IDE immunoreactive neurons in rat brain, indicate that haloperidol per se, is not responsible for the decreased neuronal expression of the enzyme in schizophrenics. Haloperidol however, might exert some effect on IDE, through changes of the expression levels of its substrates IGF-I and II, insulin and beta-endorphin. Reduced cortical IDE expression might be part of the disturbed insulin signaling cascades found in schizophrenia. Furthermore, it might contribute to the altered metabolism of certain neuropeptides (IGF-I and IGF-II, beta-endorphin), in schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Haloperidol/farmacologia , Insulisina/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Esquizofrenia/patologia , Adulto , Idoso , Animais , Antipsicóticos/uso terapêutico , Linhagem Celular Tumoral , Doença Crônica , Regulação para Baixo/fisiologia , Feminino , Haloperidol/uso terapêutico , Humanos , Insulisina/genética , Masculino , Pessoa de Meia-Idade , Neuroblastoma/enzimologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Mudanças Depois da Morte , Córtex Pré-Frontal/enzimologia , Córtex Pré-Frontal/patologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...