Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 841: 146756, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35905857

RESUMO

Non-coding RNAs are key regulatory players in bacteria. Many computationally predicted non-coding RNAs, however, lack functional associations. An example is the Bacillaceae-1 RNA motif, whose Rfam model consists of two hairpin loops. We find the motif conserved in nine of 13 non-pathogenic strains of the genus Bacillus but only in one pathogenic strain. To elucidate functional characteristics, we studied 118 hits of the Rfam model in 11 Bacillus spp. and found two distinct classes based on the ensemble diversity of their RNA secondary structure and the genomic context concerning the ribosomal RNA (rRNA) cluster. Forty hits are associated with the rRNA cluster, of which all 19 hits upstream flanking of 16S rRNA have a reverse complementary structure of low structural diversity. Fifty-two hits have large ensemble diversity, of which 38 are located between two coding genes. For eight hits in Bacillus subtilis, we investigated public expression data under various conditions and observed either the forward or the reverse complementary motif expressed. Five hits are associated with the rRNA cluster. Four of them are located upstream of the 16S rRNA and are not transcriptionally active, but instead, their reverse complements with low structural diversity are expressed together with the rRNA cluster. The three other hits are located between two coding genes in non-conserved genomic loci. Two of them are independently expressed from their surrounding genes and are structurally diverse. In summary, we found that Bacillaceae-1 RNA motifs upstream flanking of ribosomal RNA clusters tend to have one stable structure with the reverse complementary motif expressed in B. subtilis. In contrast, a subgroup of intergenic motifs has the thermodynamic potential for structural switches.


Assuntos
Bacillaceae , Bacillus , Bacillaceae/genética , Bacillaceae/metabolismo , Bacillus/genética , Bacillus subtilis/genética , Motivos de Nucleotídeos/genética , Filogenia , RNA Ribossômico/genética , RNA Ribossômico 16S/genética
2.
Front Genet ; 10: 1268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921306

RESUMO

Reprogramming of adipocyte function in obesity is implicated in metabolic disorders like type 2 diabetes. Here, we used the pig, an animal model sharing many physiological and pathophysiological similarities with humans, to perform in-depth epigenomic and transcriptomic characterization of pure adipocyte fractions. Using a combined DNA methylation capture sequencing and Reduced Representation bisulfite sequencing (RRBS) strategy in 11 lean and 12 obese pigs, we identified in 3529 differentially methylated regions (DMRs) located at close proximity to-, or within genes in the adipocytes. By sequencing of the transcriptome from the same fraction of isolated adipocytes, we identified 276 differentially expressed transcripts with at least one or more DMR. These transcripts were over-represented in gene pathways related to MAPK, metabolic and insulin signaling. Using a candidate gene approach, we further characterized 13 genes potentially regulated by DNA methylation and identified putative transcription factor binding sites that could be affected by the differential methylation in obesity. Our data constitute a valuable resource for further investigations aiming to delineate the epigenetic etiology of metabolic disorders.

3.
Bioinformatics ; 32(8): 1238-40, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26704597

RESUMO

MOTIVATION: Structured RNAs can be hard to search for as they often are not well conserved in their primary structure and are local in their genomic or transcriptomic context. Thus, the need for tools which in particular can make local structural alignments of RNAs is only increasing. RESULTS: To meet the demand for both large-scale screens and hands on analysis through web servers, we present a new multithreaded version of Foldalign. We substantially improve execution time while maintaining all previous functionalities, including carrying out local structural alignments of sequences with low similarity. Furthermore, the improvements allow for comparing longer RNAs and increasing the sequence length. For example, lengths in the range 2000-6000 nucleotides improve execution up to a factor of five. AVAILABILITY AND IMPLEMENTATION: The Foldalign software and the web server are available at http://rth.dk/resources/foldalign CONTACT: gorodkin@rth.dk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA/química , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Software , Transcriptoma
4.
Nucleic Acids Res ; 43(17): 8135-45, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26283181

RESUMO

A key aspect of RNA secondary structure prediction is the identification of novel functional elements. This is a challenging task because these elements typically are embedded in longer transcripts where the borders between the element and flanking regions have to be defined. The flanking sequences impact the folding of the functional elements both at the level of computational analyses and when the element is extracted as a transcript for experimental analysis. Here, we analyze how different flanking region lengths impact folding into a constrained structure by computing probabilities of folding for different sizes of flanking regions. Our method, RNAcop (RNA context optimization by probability), is tested on known and de novo predicted structures. In vitro experiments support the computational analysis and suggest that for a number of structures, choosing proper lengths of flanking regions is critical. RNAcop is available as web server and stand-alone software via http://rth.dk/resources/rnacop.


Assuntos
Dobramento de RNA , RNA/química , Software , Motivos de Nucleotídeos , Análise de Sequência de RNA
5.
BMC Genomics ; 15: 459, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24917120

RESUMO

BACKGROUND: Annotating mammalian genomes for noncoding RNAs (ncRNAs) is nontrivial since far from all ncRNAs are known and the computational models are resource demanding. Currently, the human genome holds the best mammalian ncRNA annotation, a result of numerous efforts by several groups. However, a more direct strategy is desired for the increasing number of sequenced mammalian genomes of which some, such as the pig, are relevant as disease models and production animals. RESULTS: We present a comprehensive annotation of structured RNAs in the pig genome. Combining sequence and structure similarity search as well as class specific methods, we obtained a conservative set with a total of 3,391 structured RNA loci of which 1,011 and 2,314, respectively, hold strong sequence and structure similarity to structured RNAs in existing databases. The RNA loci cover 139 cis-regulatory element loci, 58 lncRNA loci, 11 conflicts of annotation, and 3,183 ncRNA genes. The ncRNA genes comprise 359 miRNAs, 8 ribozymes, 185 rRNAs, 638 snoRNAs, 1,030 snRNAs, 810 tRNAs and 153 ncRNA genes not belonging to the here fore mentioned classes. When running the pipeline on a local shuffled version of the genome, we obtained no matches at the highest confidence level. Additional analysis of RNA-seq data from a pooled library from 10 different pig tissues added another 165 miRNA loci, yielding an overall annotation of 3,556 structured RNA loci. This annotation represents our best effort at making an automated annotation. To further enhance the reliability, 571 of the 3,556 structured RNAs were manually curated by methods depending on the RNA class while 1,581 were declared as pseudogenes. We further created a multiple alignment of pig against 20 representative vertebrates, from which RNAz predicted 83,859 de novo RNA loci with conserved RNA structures. 528 of the RNAz predictions overlapped with the homology based annotation or novel miRNAs. We further present a substantial synteny analysis which includes 1,004 lineage specific de novo RNA loci and 4 ncRNA loci in the known annotation specific for Laurasiatheria (pig, cow, dolphin, horse, cat, dog, hedgehog). CONCLUSIONS: We have obtained one of the most comprehensive annotations for structured ncRNAs of a mammalian genome, which is likely to play central roles in both health modelling and production. The core annotation is available in Ensembl 70 and the complete annotation is available at http://rth.dk/resources/rnannotator/susscr102/version1.02.


Assuntos
Genoma , RNA/metabolismo , Suínos/genética , Animais , Análise por Conglomerados , Loci Gênicos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA/química , RNA/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Sintenia/genética
6.
Trends Biotechnol ; 28(1): 9-19, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19942311

RESUMO

Growing recognition of the numerous, diverse and important roles played by non-coding RNA in all organisms motivates better elucidation of these cellular components. Comparative genomics is a powerful tool for this task and is arguably preferable to any high-throughput experimental technology currently available, because evolutionary conservation highlights functionally important regions. Conserved secondary structure, rather than primary sequence, is the hallmark of many functionally important RNAs, because compensatory substitutions in base-paired regions preserve structure. Unfortunately, such substitutions also obscure sequence identity and confound alignment algorithms, which complicates analysis greatly. This paper surveys recent computational advances in this difficult arena, which have enabled genome-scale prediction of cross-species conserved RNA elements. These predictions suggest that a wealth of these elements indeed exist.


Assuntos
Biologia Computacional/métodos , Genoma/genética , Conformação de Ácido Nucleico , RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Sequência de Bases/genética , Hibridização Genômica Comparativa , Sequência Conservada , Evolução Molecular
7.
PLoS Comput Biol ; 3(10): 1896-908, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17937495

RESUMO

It has become clear that noncoding RNAs (ncRNA) play important roles in cells, and emerging studies indicate that there might be a large number of unknown ncRNAs in mammalian genomes. There exist computational methods that can be used to search for ncRNAs by comparing sequences from different genomes. One main problem with these methods is their computational complexity, and heuristics are therefore employed. Two heuristics are currently very popular: pre-folding and pre-aligning. However, these heuristics are not ideal, as pre-aligning is dependent on sequence similarity that may not be present and pre-folding ignores the comparative information. Here, pruning of the dynamical programming matrix is presented as an alternative novel heuristic constraint. All subalignments that do not exceed a length-dependent minimum score are discarded as the matrix is filled out, thus giving the advantage of providing the constraints dynamically. This has been included in a new implementation of the FOLDALIGN algorithm for pairwise local or global structural alignment of RNA sequences. It is shown that time and memory requirements are dramatically lowered while overall performance is maintained. Furthermore, a new divide and conquer method is introduced to limit the memory requirement during global alignment and backtrack of local alignment. All branch points in the computed RNA structure are found and used to divide the structure into smaller unbranched segments. Each segment is then realigned and backtracked in a normal fashion. Finally, the FOLDALIGN algorithm has also been updated with a better memory implementation and an improved energy model. With these improvements in the algorithm, the FOLDALIGN software package provides the molecular biologist with an efficient and user-friendly tool for searching for new ncRNAs. The software package is available for download at http://foldalign.ku.dk.


Assuntos
Biologia Computacional/métodos , RNA não Traduzido/química , RNA/química , RNA/genética , Algoritmos , Animais , Humanos , Camundongos , Modelos Estatísticos , Modelos Teóricos , Conformação de Ácido Nucleico , Software , Fatores de Tempo
8.
RNA ; 13(11): 1850-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17804647

RESUMO

We have developed a semiautomated RNA sequence editor (SARSE) that integrates tools for analyzing RNA alignments. The editor highlights different properties of the alignment by color, and its integrated analysis tools prevent the introduction of errors when doing alignment editing. SARSE readily connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster: the mir-399 RNA, vertebrate telomase RNA (vert-TR), bacterial transfer-messenger RNA (tmRNA), and the signal recognition particle (SRP) RNA. The general use of the method is illustrated by the ability to accommodate pseudoknots and handle even large and divergent RNA families. The open architecture of the SARSE editor makes it a flexible tool to improve all RNA alignments with relatively little human intervention. Online documentation and software are available at (http://sarse.ku.dk).


Assuntos
Alinhamento de Sequência/métodos , Análise de Sequência de RNA , Software , Biologia Computacional , Bases de Dados Genéticas , Conformação de Ácido Nucleico , RNA/química , Homologia de Sequência do Ácido Nucleico , Interface Usuário-Computador
9.
Bioinformatics ; 23(13): i387-91, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17646321

RESUMO

MOTIVATION: Single nucleotide polymorphisms (SNPs) analysis is an important means to study genetic variation. A fast and cost-efficient approach to identify large numbers of novel candidates is the SNP mining of large scale sequencing projects. The increasing availability of sequence trace data in public repositories makes it feasible to evaluate SNP predictions on the DNA chromatogram level. MAVIANT, a platform-independent Multipurpose Alignment VIewing and Annotation Tool, provides DNA chromatogram and alignment views and facilitates evaluation of predictions. In addition, it supports direct manual annotation, which is immediately accessible and can be easily shared with external collaborators. RESULTS: Large-scale SNP mining of polymorphisms bases on porcine EST sequences yielded more than 7900 candidate SNPs in coding regions (cSNPs), which were annotated relative to the human genome. Non-synonymous SNPs were analyzed for their potential effect on the protein structure/function using the PolyPhen and SIFT prediction programs. Predicted SNPs and annotations are stored in a web-based database. Using MAVIANT SNPs can visually be verified based on the DNA sequencing traces. A subset of candidate SNPs was selected for experimental validation by resequencing and genotyping. This study provides a web-based DNA chromatogram and contig browser that facilitates the evaluation and selection of candidate SNPs, which can be applied as genetic markers for genome wide genetic studies. AVAILABILITY: The stand-alone version of MAVIANT program for local use is freely available under GPL license terms at http://snp.agrsci.dk/maviant. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise Mutacional de DNA/métodos , Bases de Dados Genéticas , Documentação/métodos , Etiquetas de Sequências Expressas , Polimorfismo de Nucleotídeo Único/genética , Software , Interface Usuário-Computador , Algoritmos , Animais , Gráficos por Computador , Sistemas de Gerenciamento de Base de Dados , Armazenamento e Recuperação da Informação , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Suínos
10.
Genome Biol ; 8(4): R45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17407547

RESUMO

BACKGROUND: Knowledge of the structure of gene expression is essential for mammalian transcriptomics research. We analyzed a collection of more than one million porcine expressed sequence tags (ESTs), of which two-thirds were generated in the Sino-Danish Pig Genome Project and one-third are from public databases. The Sino-Danish ESTs were generated from one normalized and 97 non-normalized cDNA libraries representing 35 different tissues and three developmental stages. RESULTS: Using the Distiller package, the ESTs were assembled to roughly 48,000 contigs and 73,000 singletons, of which approximately 25% have a high confidence match to UniProt. Approximately 6,000 new porcine gene clusters were identified. Expression analysis based on the non-normalized libraries resulted in the following findings. The distribution of cluster sizes is scaling invariant. Brain and testes are among the tissues with the greatest number of different expressed genes, whereas tissues with more specialized function, such as developing liver, have fewer expressed genes. There are at least 65 high confidence housekeeping gene candidates and 876 cDNA library-specific gene candidates. We identified differential expression of genes between different tissues, in particular brain/spinal cord, and found patterns of correlation between genes that share expression in pairs of libraries. Finally, there was remarkable agreement in expression between specialized tissues according to Gene Ontology categories. CONCLUSION: This EST collection, the largest to date in pig, represents an essential resource for annotation, comparative genomics, assembly of the pig genome sequence, and further porcine transcription studies.


Assuntos
Etiquetas de Sequências Expressas , RNA Mensageiro/metabolismo , Suínos/genética , Animais , Análise por Conglomerados , Biologia Computacional , Expressão Gênica , Perfilação da Expressão Gênica , Biblioteca Gênica , Genômica , Família Multigênica
11.
Bioinformatics ; 23(8): 926-32, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17324941

RESUMO

MOTIVATION: An apparent paradox in computational RNA structure prediction is that many methods, in advance, require a multiple alignment of a set of related sequences, when searching for a common structure between them. However, such a multiple alignment is hard to obtain even for few sequences with low sequence similarity without simultaneously folding and aligning them. Furthermore, it is of interest to conduct a multiple alignment of RNA sequence candidates found from searching as few as two genomic sequences. RESULTS: Here, based on the PMcomp program, we present a global multiple alignment program, foldalignM, which performs especially well on few sequences with low sequence similarity, and is comparable in performance with state of the art programs in general. In addition, it can cluster sequences based on sequence and structure similarity and output a multiple alignment for each cluster. Furthermore, preliminary results with local datasets indicate that the program is useful for post processing foldalign pairwise scans. AVAILABILITY: The program foldalignM is implemented in JAVA and is, along with some accompanying PERL scripts, available at http://foldalign.ku.dk/


Assuntos
Análise por Conglomerados , RNA/química , RNA/genética , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Software , Algoritmos , Sequência de Bases , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
12.
Genome Res ; 16(7): 885-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16751343

RESUMO

Human and mouse genome sequences contain roughly 100,000 regions that are unalignable in primary sequence and neighbor corresponding alignable regions between both organisms. These pairs are generally assumed to be nonconserved, although the level of structural conservation between these has never been investigated. Owing to the limitations in computational methods, comparative genomics has been lacking the ability to compare such nonconserved sequence regions for conserved structural RNA elements. We have investigated the presence of structural RNA elements by conducting a local structural alignment, using FOLDALIGN, on a subset of these 100,000 corresponding regions and estimate that 1800 contain common RNA structures. Comparing our results with the recent mapping of transcribed fragments (transfrags) in human, we find that high-scoring candidates are twice as likely to be found in regions overlapped by transfrags than regions that are not overlapped by transfrags. To verify the coexpression between predicted candidates in human and mouse, we conducted expression studies by RT-PCR and Northern blotting on mouse candidates, which overlap with transfrags on human chromosome 20. RT-PCR results confirmed expression of 32 out of 36 candidates, whereas Northern blots confirmed four out of 12 candidates. Furthermore, many RT-PCR results indicate differential expression in different tissues. Hence, our findings suggest that there are corresponding regions between human and mouse, which contain expressed non-coding RNA sequences not alignable in primary sequence.


Assuntos
Genoma Humano , Genoma , Camundongos/genética , RNA/química , Animais , Pareamento de Bases , Sequência de Bases , Galinhas/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 20 , Sequência Conservada , Cães , Humanos , Conformação de Ácido Nucleico , Ratos , Análise de Sequência de RNA/estatística & dados numéricos , Homologia de Sequência do Ácido Nucleico , Software , Transcrição Gênica
13.
Nucleic Acids Res ; 33(Web Server issue): W650-3, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15980555

RESUMO

Foldalign is a Sankoff-based algorithm for making structural alignments of RNA sequences. Here, we present a web server for making pairwise alignments between two RNA sequences, using the recently updated version of foldalign. The server can be used to scan two sequences for a common structural RNA motif of limited size, or the entire sequences can be aligned locally or globally. The web server offers a graphical interface, which makes it simple to make alignments and manually browse the results. The web server can be accessed at http://foldalign.kvl.dk.


Assuntos
RNA/química , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Software , Algoritmos , Gráficos por Computador , Internet , Conformação de Ácido Nucleico , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...