Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 82(1): 95-107, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16228616

RESUMO

Defining a quantitative relationship between chlorophyll a fluorescence yield and Photosystem II (PS II) function is important to photosynthesis research. Prior work [Peterson and Havir (2003) Photosynth Res 75: 57-70] indicated an apparent effect of psbS genotype on the in vivo rate constant for photochemistry in PS II (k(P0)). The nuclear psbS gene encodes a 22-kDa pigment-binding antenna protein (PS II-S) essential for photoprotective nonphotochemical quenching (NPQ) in PS II. Ten Arabidopsis thaliana lines were chosen for study, encompassing effects on PS II-S expression level and/or structure due to single-site amino acid substitution. Short-term (i.e. seconds) irradiance-dependent changes in steady state fluorescence yields F(o) and F(m)(open and closed centers, respectively) were evaluated for compliance with the reversible radical pair (RRP) model of PS II. All lines (including normal Nicotiana tabacum and Zea mays) deviated from the RRP scheme in the same way indicating that psbS genotype per se does not alter interactions between the antenna and reaction center and thereby affect k(P0). Rather, observed departures from RRP model behavior are consistent with overestimation of F(m) due to perturbing effects of the saturating multiple turnover flash employed in its measurement. Reversal of direct quenching of singlet states by plastoquinone during the flash could occur but by itself cannot account for the anomalous covariation in F(o) and F(m). Reduction of the PS II acceptor side apparently either amplifies the rate constant for fluorescence or suppresses that of xanthophyll-dependent thermal deactivation (q(E)). A procedure was devised that considers F(o) when correcting maximal fluorescence values for measurement bias. A high degree of consistency in assessment of PS II quantum yield based on corrected fluorescence parameters and simultaneous CO(2) exchange measurements was noted under both steady state and transient conditions (360 mul CO(2)l(-1), 1% O(2)).

2.
Photosynth Res ; 75(1): 57-70, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-16245094

RESUMO

Complementary techniques of chlorophyll a fluorescence, steady state CO(2) exchange, and O(2) release during a multiple turnover flash were applied to compare responses to irradiance for leaves of wild type and psbS mutants. The latter included variants in which the psbS gene was deleted (npq4-1) or possessed a single point mutation (npq4-9). Nonphotochemical quenching (NPQ) was reduced by up to 80 and 50%, respectively, in these lines at high irradiance. Analysis of changes in steady-state fluorescence yields and quantum yield of linear electron transport in the context of the reversible radical pair model of Photosystem II (PS II) indicated that NPQ occurs by nonradiative deactivation of chlorophyll singlet states in normal leaves. In contrast, application of the same criteria together with the observed irreversibility of NPQ and decline in density of functional PS II reaction centers following excessive illumination indicated a change in reaction center properties for the psbS deletion phenotype (Npq4-1(-)). Specifically, PS II reaction centers in Npq4-1(-) convert to a photochemically inactive, yet strongly quenching, form in intense light. The possibility of formation of a carotenoid or chlorophyll cation quencher in the reaction center is discussed. Results for the point mutant phenotype (Npq4-9(-)) were intermediate to those of wild-type and Npq4-1(-). Furthermore, wild-type leaves exhibited a significant reversible increase in the PS II in vivo rate constant for photochemistry (k(P0)) in saturating compared to limiting light. Changes in k(P0) could not be accounted for in terms of a classic phosphorylation-dependent (state transition) mechanism. Changes in k(P0) may arise from alternate pigment-protein conformations that alter the way excitons equilibrate among PS II chromophores. The lack of similar irradiance-dependent changes in k(P0) for the psbS mutants suggests a role for the PS II-S protein in the regulation of exciton distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...