Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 12(11): e1002005, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25423365

RESUMO

Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.


Assuntos
Artrópodes/genética , Genoma , Sintenia , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Metilação de DNA , Evolução Molecular , Feminino , Genoma Mitocondrial , Hormônios/genética , Masculino , Família Multigênica , Filogenia , Polimorfismo Genético , Proteínas Quinases/genética , RNA não Traduzido/genética , Receptores Odorantes/genética , Selenoproteínas/genética , Cromossomos Sexuais , Fatores de Transcrição/genética
2.
BMC Evol Biol ; 14: 212, 2014 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-25281000

RESUMO

BACKGROUND: The recent expansion of whole-genome sequence data available from diverse animal lineages provides an opportunity to investigate the evolutionary origins of specific classes of human disease genes. Previous studies have observed that human disease genes are of particularly ancient origin. While this suggests that many animal species have the potential to serve as feasible models for research on genes responsible for human disease, it is unclear whether this pattern has meaningful implications and whether it prevails for every class of human disease. RESULTS: We used a comparative genomics approach encompassing a broad phylogenetic range of animals with sequenced genomes to determine the evolutionary patterns exhibited by human genes associated with different classes of disease. Our results support previous claims that most human disease genes are of ancient origin but, more importantly, we also demonstrate that several specific disease classes have a significantly large proportion of genes that emerged relatively recently within the metazoans and/or vertebrates. An independent assessment of the synonymous to non-synonymous substitution rates of human disease genes found in mammals reveals that disease classes that arose more recently also display unexpected rates of purifying selection between their mammalian and human counterparts. CONCLUSIONS: Our results reveal the heterogeneity underlying the evolutionary origins of (and selective pressures on) different classes of human disease genes. For example, some disease gene classes appear to be of uncommonly recent (i.e., vertebrate-specific) origin and, as a whole, have been evolving at a faster rate within mammals than the majority of disease classes having more ancient origins. The novel patterns that we have identified may provide new insight into cases where studies using traditional animal models were unable to produce results that translated to humans. Conversely, we note that the larger set of disease classes do have ancient origins, suggesting that many non-traditional animal models have the potential to be useful for studying many human disease genes. Taken together, these findings emphasize why model organism selection should be done on a disease-by-disease basis, with evolutionary profiles in mind.


Assuntos
Evolução Biológica , Modelos Animais de Doenças , Doença/genética , Animais , Humanos , Modelos Genéticos , Especificidade da Espécie
3.
Gigascience ; 3: 9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24987520

RESUMO

BACKGROUND: Horseshoe crabs are marine arthropods with a fossil record extending back approximately 450 million years. They exhibit remarkable morphological stability over their long evolutionary history, retaining a number of ancestral arthropod traits, and are often cited as examples of "living fossils." As arthropods, they belong to the Ecdysozoa, an ancient super-phylum whose sequenced genomes (including insects and nematodes) have thus far shown more divergence from the ancestral pattern of eumetazoan genome organization than cnidarians, deuterostomes and lophotrochozoans. However, much of ecdysozoan diversity remains unrepresented in comparative genomic analyses. RESULTS: Here we apply a new strategy of combined de novo assembly and genetic mapping to examine the chromosome-scale genome organization of the Atlantic horseshoe crab, Limulus polyphemus. We constructed a genetic linkage map of this 2.7 Gbp genome by sequencing the nuclear DNA of 34 wild-collected, full-sibling embryos and their parents at a mean redundancy of 1.1x per sample. The map includes 84,307 sequence markers grouped into 1,876 distinct genetic intervals and 5,775 candidate conserved protein coding genes. CONCLUSIONS: Comparison with other metazoan genomes shows that the L. polyphemus genome preserves ancestral bilaterian linkage groups, and that a common ancestor of modern horseshoe crabs underwent one or more ancient whole genome duplications 300 million years ago, followed by extensive chromosome fusion. These results provide a counter-example to the often noted correlation between whole genome duplication and evolutionary radiations. The new, low-cost genetic mapping method for obtaining a chromosome-scale view of non-model organism genomes that we demonstrate here does not require laboratory culture, and is potentially applicable to a broad range of other species.

4.
Science ; 342(6164): 1242592, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24337300

RESUMO

An understanding of ctenophore biology is critical for reconstructing events that occurred early in animal evolution. Toward this goal, we have sequenced, assembled, and annotated the genome of the ctenophore Mnemiopsis leidyi. Our phylogenomic analyses of both amino acid positions and gene content suggest that ctenophores rather than sponges are the sister lineage to all other animals. Mnemiopsis lacks many of the genes found in bilaterian mesodermal cell types, suggesting that these cell types evolved independently. The set of neural genes in Mnemiopsis is similar to that of sponges, indicating that sponges may have lost a nervous system. These results present a newly supported view of early animal evolution that accounts for major losses and/or gains of sophisticated cell types, including nerve and muscle cells.


Assuntos
Evolução Biológica , Linhagem da Célula/genética , Ctenóforos/citologia , Ctenóforos/genética , Genoma , Animais , Sequência de Bases , Ctenóforos/classificação , Mesoderma/citologia , Dados de Sequência Molecular , Desenvolvimento Muscular/genética , Neurogênese/genética , Filogenia
5.
Nature ; 493(7433): 526-31, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23254933

RESUMO

Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.


Assuntos
Padronização Corporal/genética , Evolução Molecular , Genoma/genética , Sanguessugas/genética , Moluscos/genética , Filogenia , Poliquetos/genética , Animais , Sequência Conservada/genética , Genes Homeobox/genética , Ligação Genética , Especiação Genética , Humanos , Mutação INDEL/genética , Íntrons/genética , Sanguessugas/anatomia & histologia , Moluscos/anatomia & histologia , Família Multigênica/genética , Poliquetos/anatomia & histologia , Sintenia/genética
6.
PLoS One ; 7(10): e46759, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056439

RESUMO

Spontaneous mutations play a central role in evolution. Despite their importance, mutation rates are some of the most elusive parameters to measure in evolutionary biology. The combination of mutation accumulation (MA) experiments and whole-genome sequencing now makes it possible to estimate mutation rates by directly observing new mutations at the molecular level across the whole genome. We performed an MA experiment with the social amoeba Dictyostelium discoideum and sequenced the genomes of three randomly chosen lines using high-throughput sequencing to estimate the spontaneous mutation rate in this model organism. The mitochondrial mutation rate of 6.76×10(-9), with a Poisson confidence interval of 4.1×10(-9) - 9.5×10(-9), per nucleotide per generation is slightly lower than estimates for other taxa. The mutation rate estimate for the nuclear DNA of 2.9×10(-11), with a Poisson confidence interval ranging from 7.4×10(-13) to 1.6×10(-10), is the lowest reported for any eukaryote. These results are consistent with low microsatellite mutation rates previously observed in D. discoideum and low levels of genetic variation observed in wild D. discoideum populations. In addition, D. discoideum has been shown to be quite resistant to DNA damage, which suggests an efficient DNA-repair mechanism that could be an adaptation to life in soil and frequent exposure to intracellular and extracellular mutagenic compounds. The social aspect of the life cycle of D. discoideum and a large portion of the genome under relaxed selection during vegetative growth could also select for a low mutation rate. This hypothesis is supported by a significantly lower mutation rate per cell division in multicellular eukaryotes compared with unicellular eukaryotes.


Assuntos
Dictyostelium/genética , Genoma/genética , Mutação
7.
BMC Bioinformatics ; 12 Suppl 9: S11, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22151646

RESUMO

BACKGROUND: Many metazoan genomes conserve chromosome-scale gene linkage relationships ("macro-synteny") from the common ancestor of multicellular animal life 1234, but the biological explanation for this conservation is still unknown. Double cut and join (DCJ) is a simple, well-studied model of neutral genome evolution amenable to both simulation and mathematical analysis 5, but as we show here, it is not sufficent to explain long-term macro-synteny conservation. RESULTS: We examine a family of simple (one-parameter) extensions of DCJ to identify models and choices of parameters consistent with the levels of macro- and micro-synteny conservation observed among animal genomes. Our software implements a flexible strategy for incorporating genomic context into the DCJ model to incorporate various types of genomic context ("DCJ-[C]"), and is available as open source software from http://github.com/putnamlab/dcj-c. CONCLUSIONS: A simple model of genome evolution, in which DCJ moves are allowed only if they maintain chromosomal linkage among a set of constrained genes, can simultaneously account for the level of macro-synteny conservation and for correlated conservation among multiple pairs of species. Simulations under this model indicate that a constraint on approximately 7% of metazoan genes is sufficient to constrain genome rearrangement to an average rate of 25 inversions and 1.7 translocations per million years.


Assuntos
Evolução Molecular , Genoma , Modelos Genéticos , Sintenia , Animais , Cromossomos , Ligação Genética , Humanos , Invertebrados/genética , Software
8.
BMC Genomics ; 10: 180, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19393050

RESUMO

BACKGROUND: We present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS) only assembly used for many other animal genomes including the rhesus macaque. RESULTS: The assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information.Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5%) of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly. CONCLUSION: The biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.


Assuntos
Bovinos/genética , Genoma , Genômica/métodos , Animais , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Marcadores Genéticos , Análise de Sequência de DNA
9.
PLoS One ; 3(3): e1836, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18350171

RESUMO

The assembly methods used for whole-genome shotgun (WGS) data have a major impact on the quality of resulting draft genomes. We present a novel algorithm to generate a set of "reliable" overlaps based on identifying repeat k-mers. To demonstrate the benefits of using reliable overlaps, we have created a version of the Phrap assembly program that uses only overlaps from a specific list. We call this version PhrapUMD. Integrating PhrapUMD and our "reliable-overlap" algorithm with the Baylor College of Medicine assembler, Atlas, we assemble the BACs from the Rattus norvegicus genome project. Starting with the same data as the Nov. 2002 Atlas assembly, we compare our results and the Atlas assembly to the 4.3 Mb of rat sequence in the 21 BACs that have been finished. Our version of the draft assembly of the 21 BACs increases the coverage of finished sequence from 93.4% to 96.3%, while simultaneously reducing the base error rate from 4.5 to 1.1 errors per 10,000 bases. There are a number of ways of assessing the relative merits of assemblies when the finished sequence is available. If one views the overall quality of an assembly as proportional to the inverse of the product of the error rate and sequence missed, then the assembly presented here is seven times better. The UMD Overlapper with options for reliable overlaps is available from the authors at http://www.genome.umd.edu. We also provide the changes to the Phrap source code enabling it to use only the reliable overlaps.


Assuntos
Genoma , Ratos/genética , Animais , Cromossomos Artificiais Bacterianos , Reprodutibilidade dos Testes
10.
Proc Natl Acad Sci U S A ; 103(35): 13121-5, 2006 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-16924100

RESUMO

A power-law distribution of the length of perfectly conserved sequence from mouse/human whole-genome intersection and alignment is exhibited. Spatial correlations of these elements within the mouse genome are studied. It is argued that these power-law distributions and correlations are comprised in part by functional noncoding sequence and ought to be accounted for in estimating the statistical significance of apparent sequence conservation. These inter-genomic correlations of conservation are placed in the context of previously observed intra-genomic correlations, and their possible origins and consequences are discussed.


Assuntos
Sequência Conservada/genética , Genoma/genética , Alinhamento de Sequência , Animais , Sequência de Bases , Análise por Conglomerados , Genômica , Humanos , Camundongos , Sequências Repetitivas de Ácido Nucleico/genética
11.
Nature ; 440(7082): 346-51, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16541075

RESUMO

Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.


Assuntos
Cromossomos Humanos Par 12/genética , Animais , Composição de Bases , Ilhas de CpG/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Genes/genética , Humanos , Desequilíbrio de Ligação/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Mutagênese Insercional/genética , Pan troglodytes/genética , Análise de Sequência de DNA , Deleção de Sequência/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Sintenia/genética
12.
Nature ; 434(7031): 325-37, 2005 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-15772651

RESUMO

The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.


Assuntos
Cromossomos Humanos X/genética , Evolução Molecular , Genômica , Análise de Sequência de DNA , Animais , Antígenos de Neoplasias/genética , Centrômero/genética , Cromossomos Humanos Y/genética , Mapeamento de Sequências Contíguas , Troca Genética/genética , Mecanismo Genético de Compensação de Dose , Feminino , Ligação Genética/genética , Genética Médica , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , RNA/genética , Sequências Repetitivas de Ácido Nucleico/genética , Homologia de Sequência do Ácido Nucleico , Testículo/metabolismo
13.
Genome Res ; 15(1): 1-18, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15632085

RESUMO

We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25-55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species--but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.


Assuntos
Cromossomos/genética , Drosophila/genética , Evolução Molecular , Genes de Insetos/genética , Genoma , Análise de Sequência de DNA/métodos , Animais , Quebra Cromossômica/genética , Inversão Cromossômica/genética , Mapeamento Cromossômico/métodos , Sequência Conservada/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Rearranjo Gênico/genética , Variação Genética/genética , Dados de Sequência Molecular , Valor Preditivo dos Testes , Sequências Repetitivas de Ácido Nucleico/genética
14.
Nat Genet ; 36(9): 952-4, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15322544

RESUMO

By analyzing genomic copy-number differences using high-resolution mouse whole-genome BAC arrays, we uncover substantial differences in regional DNA content between inbred strains of mice. The identification of these apparently common segmental polymorphisms suggests that these differences can contribute to genetic variability and pathologic susceptibility.


Assuntos
Dosagem de Genes , Camundongos Endogâmicos/genética , Polimorfismo Genético , Animais , Sequência de Bases , Cromossomos Artificiais Bacterianos , Hibridização in Situ Fluorescente , Camundongos
15.
Genome Res ; 14(4): 721-32, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15060016

RESUMO

Atlas is a suite of programs developed for assembly of genomes by a "combined approach" that uses DNA sequence reads from both BACs and whole-genome shotgun (WGS) libraries. The BAC clones afford advantages of localized assembly with reduced computational load, and provide a robust method for dealing with repeated sequences. Inclusion of WGS sequences facilitates use of different clone insert sizes and reduces data production costs. A core function of Atlas software is recruitment of WGS sequences into appropriate BACs based on sequence overlaps. Because construction of consensus sequences is from local assembly of these reads, only small (<0.1%) units of the genome are assembled at a time. Once assembled, each BAC is used to derive a genomic layout. This "sequence-based" growth of the genome map has greater precision than with non-sequence-based methods. Use of BACs allows correction of artifacts due to repeats at each stage of the process. This is aided by ancillary data such as BAC fingerprint, other genomic maps, and syntenic relations with other genomes. Atlas was used to assemble a draft DNA sequence of the rat genome; its major components including overlapper and split-scaffold are also being used in pure WGS projects.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Genoma , Software/tendências , Animais , Cromossomos Artificiais Bacterianos/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...