Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Res Nurs Health ; 47(3): 289-301, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175545

RESUMO

This pilot study assessed the feasibility of implementing a pain assessment information visualization (InfoViz) tool to address cultural and language barriers among limited English proficiency (LEP) Hmong patients in primary care. We used a static group comparison design to collect data from 20 patient, interpreter, and provider triads under usual care (i.e., interpreter using verbal pain descriptions), followed by another 20 triads under the intervention (i.e., interpreter using verbal pain descriptions and the InfoViz tool). Feasibility outcomes included recruitment and retention rates, InfoViz tool completion, acceptability, and fidelity. We also assessed mutual understanding (MU) and pain electronic health record (EHR) documentation. Descriptive data were calculated and thematic analysis was conducted. Thirty-six LEP Hmong patients (n = 29 female, mean age = 59.03), 27 providers (n = 15 female), and four interpreters participated in this study. The patient recruitment rate was 18% while the retention rate was 81%. Interpreter recruitment rate was 80%, and 75% for retention rate. The intervention fidelity mean score was 83%. In the intervention condition, patient-provider MU of pain severity improved by 30%, coupled with a 28% increase in pain severity EHR documentation compared to usual care. While communication of pain quality did not improve, there was a higher mean number of pain descriptors (3.31 in the intervention vs. 1.79 in usual care) in EHR documentation. All participants had a positive experience with the tool, reporting it as valuable with 100% completeness of all tools. Findings revealed the tool was acceptable and feasible to use among LEP patients-interpreters-providers, providing support for an efficacy study.


Assuntos
Comunicação , Tradução , Humanos , Feminino , Pessoa de Meia-Idade , Projetos Piloto , Barreiras de Comunicação , Pessoal de Saúde , Dor , Atenção Primária à Saúde
2.
J Neurosurg Case Lessons ; 3(7)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36130553

RESUMO

BACKGROUND: Minimally invasive bilateral decompressive lumbar laminectomy with a unilateral approach is a less destructive procedure compared to the traditional open bilateral laminectomy. The objective of this study is to report the authors' experience with this technique. The first 26 cases performed using the unilateral approach for bilateral decompression are described. Baseline characteristics, operative time, blood loss, and intraoperative complications were collected retrospectively. No specific surgical equipment is needed for this technique. OBSERVATIONS: Twenty-six patients and a total of 40 lumbar levels were treated. Mean operative time was 82 minutes per level and mean estimated blood loss was 40.4 mL per level. Mean length of hospitalization was 1.65 days. Cerebrospinal fluid leak occurred in 1 of 26 (3.85%) cases. LESSONS: Although improved stabilization needs to be proven in future long-term studies to clearly show a decrease in need for fusion, the initial experience with a unilateral approach is positive and continued use in minimally invasive spine surgery seems promising.

3.
Adv Mater ; 34(41): e2204957, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35945159

RESUMO

NanoCluster Beacons (NCBs) are multicolor silver nanocluster probes whose fluorescence can be activated or tuned by a proximal DNA strand called the activator. While a single-nucleotide difference in a pair of activators can lead to drastically different activation outcomes, termed polar opposite twins (POTs), it is difficult to discover new POT-NCBs using the conventional low-throughput characterization approaches. Here, a high-throughput selection method is reported that takes advantage of repurposed next-generation-sequencing chips to screen the activation fluorescence of ≈40 000 activator sequences. It is found that the nucleobases at positions 7-12 of the 18-nucleotide-long activator are critical to creating bright NCBs and positions 4-6 and 2-4 are hotspots to generate yellow-orange and red POTs, respectively. Based on these findings, a "zipper-bag" model is proposed that can explain how these hotspots facilitate the formation of distinct silver cluster chromophores and alter their chemical yields. Combining high-throughput screening with machine-learning algorithms, a pipeline is established to design bright and multicolor NCBs in silico.


Assuntos
Nanopartículas Metálicas , Prata , DNA/química , Nanopartículas Metálicas/química , Nucleotídeos , Prata/química , Espectrometria de Fluorescência
4.
Nat Commun ; 13(1): 1367, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292641

RESUMO

The S. pyogenes (Sp) Cas9 endonuclease is an important gene-editing tool. SpCas9 is directed to target sites based on complementarity to a complexed single-guide RNA (sgRNA). However, SpCas9-sgRNA also binds and cleaves genomic off-targets with only partial complementarity. To date, we lack the ability to predict cleavage and binding activity quantitatively, and rely on binary classification schemes to identify strong off-targets. We report a quantitative kinetic model that captures the SpCas9-mediated strand-replacement reaction in free-energy terms. The model predicts binding and cleavage activity as a function of time, target, and experimental conditions. Trained and validated on high-throughput bulk-biochemical data, our model predicts the intermediate R-loop state recently observed in single-molecule experiments, as well as the associated conversion rates. Finally, we show that our quantitative activity predictor can be reduced to a binary off-target classifier that outperforms the established state-of-the-art. Our approach is extensible, and can characterize any CRISPR-Cas nuclease - benchmarking natural and future high-fidelity variants against SpCas9; elucidating determinants of CRISPR fidelity; and revealing pathways to increased specificity and efficiency in engineered systems.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Endonucleases/metabolismo , Edição de Genes , RNA Guia de Cinetoplastídeos/genética
5.
PLoS One ; 17(3): e0262983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35353830

RESUMO

Fossilized plant resins, or ambers, offer a unique paleontological window into the history of life. A natural polymer, amber can preserve aspects of ancient environments, including whole organisms, for tens or even hundreds of millions of years. While most amber research involves imaging with visual light, other spectra are increasingly used to characterize both organismal inclusions as well as amber matrix. Terahertz (THz) radiation, which occupies the electromagnetic band between microwave and infrared light wavelengths, is non-ionizing and frequently used in polymer spectroscopy. Here, we evaluate the utility of amber terahertz spectroscopy in a comparative setting for the first time by analyzing the terahertz optical properties of samples from 10 fossil deposits ranging in age from the Miocene to the Early Cretaceous. We recover no clear relationships between amber age or botanical source and terahertz permittivity; however, we do find apparent deposit-specific permittivity among transparent amber samples. By comparing the suitability of multiple permittivity models across sample data we find that models with a distribution of dielectric relaxation times best describe the spectral permittivity of amber. We also demonstrate a process for imaging amber inclusions using terahertz transmission and find that terahertz spectroscopy can be used to identify some synthetic amber forgeries.


Assuntos
Âmbar , Espectroscopia Terahertz , Âmbar/química , Fósseis , Paleontologia/métodos , Resinas Vegetais
6.
STAR Protoc ; 2(2): 100521, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34027480

RESUMO

CRISPR interference is an increasingly popular method for perturbing gene expression. Guided by single-guide RNAs (sgRNAs), nuclease-deficient Cas9 proteins bind to specific DNA sequences and hinder transcription. Specificity is achieved through complementarity of the sgRNAs to the DNA. Changing complementarity by introducing single-nucleotide mismatches can be exploited to tune knockdown. Here, we present a computational pipeline to identify sgRNAs targeting specific genes in a bacterial genome, filter them, and titrate their activity by introducing mismatches. For complete details on the use and execution of this protocol, please refer to Hawkins et al. (2020).


Assuntos
Pareamento Incorreto de Bases/genética , Sistemas CRISPR-Cas/genética , Técnicas Genéticas , RNA Guia de Cinetoplastídeos/genética , Transcrição Gênica/genética , Biologia Computacional , Genoma Bacteriano/genética
7.
Nat Biotechnol ; 39(1): 84-93, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32895548

RESUMO

Engineered SpCas9s and AsCas12a cleave fewer off-target genomic sites than wild-type (wt) Cas9. However, understanding their fidelity, mechanisms and cleavage outcomes requires systematic profiling across mispaired target DNAs. Here we describe NucleaSeq-nuclease digestion and deep sequencing-a massively parallel platform that measures the cleavage kinetics and time-resolved cleavage products for over 10,000 targets containing mismatches, insertions and deletions relative to the guide RNA. Combining cleavage rates and binding specificities on the same target libraries, we benchmarked five SpCas9 variants and AsCas12a. A biophysical model built from these data sets revealed mechanistic insights into off-target cleavage. Engineered Cas9s, especially Cas9-HF1, dramatically increased cleavage specificity but not binding specificity compared to wtCas9. Surprisingly, AsCas12a cleavage specificity differed little from that of wtCas9. Initial DNA cleavage sites and end trimming varied by nuclease, guide RNA and the positions of mispaired nucleotides. More broadly, NucleaSeq enables rapid, quantitative and systematic comparisons of specificity and cleavage outcomes across engineered and natural nucleases.


Assuntos
Proteínas de Bactérias , Proteína 9 Associada à CRISPR , Proteínas Associadas a CRISPR , Endodesoxirribonucleases , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Edição de Genes , Cinética , Ligação Proteica/genética , Engenharia de Proteínas , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Especificidade por Substrato/genética
8.
Cell Syst ; 11(5): 523-535.e9, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080209

RESUMO

Essential genes are the hubs of cellular networks, but lack of high-throughput methods for titrating gene expression has limited our understanding of the fitness landscapes against which their expression levels are optimized. We developed a modified CRISPRi system leveraging the predictable reduction in efficacy of imperfectly matched sgRNAs to generate defined levels of CRISPRi activity and demonstrated its broad applicability. Using libraries of mismatched sgRNAs predicted to span the full range of knockdown levels, we characterized the expression-fitness relationships of most essential genes in Escherichia coli and Bacillus subtilis. We find that these relationships vary widely from linear to bimodal but are similar within pathways. Notably, despite ∼2 billion years of evolutionary separation between E. coli and B. subtilis, most essential homologs have similar expression-fitness relationships with rare but informative differences. Thus, the expression levels of essential genes may reflect homeostatic or evolutionary constraints shared between the two organisms.


Assuntos
Bacillus subtilis/genética , Escherichia coli/genética , Genes Essenciais/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/metabolismo , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Essenciais/fisiologia , Aptidão Genética/genética
9.
Proc Natl Acad Sci U S A ; 117(31): 18489-18496, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675237

RESUMO

Synthetic DNA is rapidly emerging as a durable, high-density information storage platform. A major challenge for DNA-based information encoding strategies is the high rate of errors that arise during DNA synthesis and sequencing. Here, we describe the HEDGES (Hash Encoded, Decoded by Greedy Exhaustive Search) error-correcting code that repairs all three basic types of DNA errors: insertions, deletions, and substitutions. HEDGES also converts unresolved or compound errors into substitutions, restoring synchronization for correction via a standard Reed-Solomon outer code that is interleaved across strands. Moreover, HEDGES can incorporate a broad class of user-defined sequence constraints, such as avoiding excess repeats, or too high or too low windowed guanine-cytosine (GC) content. We test our code both via in silico simulations and with synthesized DNA. From its measured performance, we develop a statistical model applicable to much larger datasets. Predicted performance indicates the possibility of error-free recovery of petabyte- and exabyte-scale data from DNA degraded with as much as 10% errors. As the cost of DNA synthesis and sequencing continues to drop, we anticipate that HEDGES will find applications in large-scale error-free information encoding.


Assuntos
DNA/genética , Mutação INDEL , Replicação do DNA , Armazenamento e Recuperação da Informação , Modelos Estatísticos
10.
Nat Biotechnol ; 38(3): 355-364, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932729

RESUMO

A lack of tools to precisely control gene expression has limited our ability to evaluate relationships between expression levels and phenotypes. Here, we describe an approach to titrate expression of human genes using CRISPR interference and series of single-guide RNAs (sgRNAs) with systematically modulated activities. We used large-scale measurements across multiple cell models to characterize activities of sgRNAs containing mismatches to their target sites and derived rules governing mismatched sgRNA activity using deep learning. These rules enabled us to synthesize a compact sgRNA library to titrate expression of ~2,400 genes essential for robust cell growth and to construct an in silico sgRNA library spanning the human genome. Staging cells along a continuum of gene expression levels combined with single-cell RNA-seq readout revealed sharp transitions in cellular behaviors at gene-specific expression thresholds. Our work provides a general tool to control gene expression, with applications ranging from tuning biochemical pathways to identifying suppressors for diseases of dysregulated gene expression.


Assuntos
Biologia Computacional/métodos , Expressão Gênica , RNA Guia de Cinetoplastídeos/genética , Análise de Célula Única/métodos , Sistemas CRISPR-Cas , Aprendizado Profundo , Edição de Genes , Biblioteca Genômica , Células HeLa , Humanos , Células K562 , Fenótipo , Análise de Sequência de RNA
11.
Proc Natl Acad Sci U S A ; 116(23): 11351-11360, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31113885

RESUMO

Historically, the evolution of bats has been analyzed using a small number of genetic loci for many species or many genetic loci for a few species. Here we present a phylogeny of 18 bat species, each of which is represented in 1,107 orthologous gene alignments used to build the tree. We generated a transcriptome sequence of Hypsignathus monstrosus, the African hammer-headed bat, and additional transcriptome sequence for Rousettus aegyptiacus, the Egyptian fruit bat. We then combined these data with existing genomic and transcriptomic data from 16 other bat species. In the analysis of such datasets, there is no clear consensus on the most reliable computational methods for the curation of quality multiple sequence alignments since these public datasets represent multiple investigators and methods, including different source materials (chromosomal DNA or expressed RNA). Here we lay out a systematic analysis of parameters and produce an advanced pipeline for curating orthologous gene alignments from combined transcriptomic and genomic data, including a software package: the Mismatching Isoform eXon Remover (MIXR). Using this method, we created alignments of 11,677 bat genes, 1,107 of which contain orthologs from all 18 species. Using the orthologous gene alignments created, we assessed bat phylogeny and also performed a holistic analysis of positive selection acting in bat genomes. We found that 181 genes have been subject to positive natural selection. This list is dominated by genes involved in immune responses and genes involved in the production of collagens.


Assuntos
Quirópteros/genética , Genoma/genética , Seleção Genética/genética , Transcriptoma/genética , Sequência de Aminoácidos , Animais , Estudo de Associação Genômica Ampla/métodos , Filogenia , Alinhamento de Sequência
12.
Nat Microbiol ; 4(2): 244-250, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30617347

RESUMO

The vast majority of bacteria, including human pathogens and microbiome species, lack genetic tools needed to systematically associate genes with phenotypes. This is the major impediment to understanding the fundamental contributions of genes and gene networks to bacterial physiology and human health. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a versatile method of blocking gene expression using a catalytically inactive Cas9 protein (dCas9) and programmable single guide RNAs, has emerged as a powerful genetic tool to dissect the functions of essential and non-essential genes in species ranging from bacteria to humans1-6. However, the difficulty of establishing effective CRISPRi systems across bacteria is a major barrier to its widespread use to dissect bacterial gene function. Here, we establish 'Mobile-CRISPRi', a suite of CRISPRi systems that combines modularity, stable genomic integration and ease of transfer to diverse bacteria by conjugation. Focusing predominantly on human pathogens associated with antibiotic resistance, we demonstrate the efficacy of Mobile-CRISPRi in gammaproteobacteria and Bacillales Firmicutes at the individual gene scale, by examining drug-gene synergies, and at the library scale, by systematically phenotyping conditionally essential genes involved in amino acid biosynthesis. Mobile-CRISPRi enables genetic dissection of non-model bacteria, facilitating analyses of microbiome function, antibiotic resistances and sensitivities, and comprehensive screens for host-microorganism interactions.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Técnicas Bacteriológicas/métodos , Sistemas CRISPR-Cas , Técnicas Genéticas , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Conjugação Genética , Resistência Microbiana a Medicamentos/genética , Biblioteca Gênica , Redes Reguladoras de Genes , Marcação de Genes , Genes Essenciais/genética , Genoma Bacteriano/genética
13.
Cureus ; 11(12): e6276, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31911869

RESUMO

Pseudoaneurysms of the thyrocervical trunk and its branches are commonly iatrogenic in nature; however, trauma is often an inciting mechanism. Open surgical repair was considered the main treatment modality until recent advances in endovascular therapy proved to be a viable treatment option. We report a case of a traumatic pseudoaneurysm arising from the ascending cervical artery with an associated arteriovenous fistula (AVF) that was treated using n-butyl cyanoacrylate (NBCA) embolization. The use of a liquid embolysate such as NBCA provided an efficient and effective means of achieving both pseudoaneurysm occlusion and AVF disconnection.

14.
Cureus ; 10(6): e2739, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30087815

RESUMO

We report an uncommon case of posterior epidural migration of a lumbar disc fragment (PEMLDF) in a patient presenting with acute, progressive back pain, radiculopathy, and weakness. PEMLDF can be mistaken for neoplastic or infectious etiologies on imaging, presenting a diagnostic and management challenge. Our patient underwent an urgent decompressive lumbar laminectomy, which revealed a PEMLDF intraoperatively. He went on to achieve good neurologic recovery.

15.
Proc Natl Acad Sci U S A ; 115(27): E6217-E6226, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29925596

RESUMO

Many large-scale, high-throughput experiments use DNA barcodes, short DNA sequences prepended to DNA libraries, for identification of individuals in pooled biomolecule populations. However, DNA synthesis and sequencing errors confound the correct interpretation of observed barcodes and can lead to significant data loss or spurious results. Widely used error-correcting codes borrowed from computer science (e.g., Hamming, Levenshtein codes) do not properly account for insertions and deletions (indels) in DNA barcodes, even though deletions are the most common type of synthesis error. Here, we present and experimentally validate filled/truncated right end edit (FREE) barcodes, which correct substitution, insertion, and deletion errors, even when these errors alter the barcode length. FREE barcodes are designed with experimental considerations in mind, including balanced guanine-cytosine (GC) content, minimal homopolymer runs, and reduced internal hairpin propensity. We generate and include lists of barcodes with different lengths and error correction levels that may be useful in diverse high-throughput applications, including >106 single-error-correcting 16-mers that strike a balance between decoding accuracy, barcode length, and library size. Moreover, concatenating two or more FREE codes into a single barcode increases the available barcode space combinatorially, generating lists with >1015 error-correcting barcodes. The included software for creating barcode libraries and decoding sequenced barcodes is efficient and designed to be user-friendly for the general biology community.


Assuntos
Sequência de Bases , Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL
16.
Nat Commun ; 8(1): 128, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743859

RESUMO

Hematopoietic stem and progenitor cells arise from the vascular endothelium of the dorsal aorta and subsequently switch niche to the fetal liver through unknown mechanisms. Here we report that vascular endothelium-specific deletion of mouse Drosha (Drosha cKO), an enzyme essential for microRNA biogenesis, leads to anemia and death. A similar number of hematopoietic stem and progenitor cells emerge from Drosha-deficient and control vascular endothelium, but Drosha cKO-derived hematopoietic stem and progenitor cells accumulate in the dorsal aorta and fail to colonize the fetal liver. Depletion of the let-7 family of microRNAs is a primary cause of this defect, as it leads to activation of leukotriene B4 signaling and induction of the α4ß1 integrin cell adhesion complex in hematopoietic stem and progenitor cells. Inhibition of leukotriene B4 or integrin rescues maturation and migration of Drosha cKO hematopoietic stem and progenitor cells to the fetal liver, while it hampers hematopoiesis in wild-type animals. Our study uncovers a previously undefined role of innate leukotriene B4 signaling as a gatekeeper of the hematopoietic niche transition.Hematopoietic stem and progenitor cells are generated first from the vascular endothelium of the dorsal aorta and then the fetal liver but what regulates this switch is unknown. Here, the authors show that changing miRNA biogenesis and leukotriene B4 signaling in mice modulates this switch in the niche.


Assuntos
Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Leucotrieno B4/metabolismo , MicroRNAs/genética , Nicho de Células-Tronco/genética , Animais , Aorta/metabolismo , Endotélio Vascular/metabolismo , Fígado/embriologia , Fígado/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transdução de Sinais/genética
17.
Cell ; 170(1): 35-47.e13, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666121

RESUMO

CRISPR-Cas nucleoproteins target foreign DNA via base pairing with a crRNA. However, a quantitative description of protein binding and nuclease activation at off-target DNA sequences remains elusive. Here, we describe a chip-hybridized association-mapping platform (CHAMP) that repurposes next-generation sequencing chips to simultaneously measure the interactions between proteins and ∼107 unique DNA sequences. Using CHAMP, we provide the first comprehensive survey of DNA recognition by a type I-E CRISPR-Cas (Cascade) complex and Cas3 nuclease. Analysis of mutated target sequences and human genomic DNA reveal that Cascade recognizes an extended protospacer adjacent motif (PAM). Cascade recognizes DNA with a surprising 3-nt periodicity. The identity of the PAM and the PAM-proximal nucleotides control Cas3 recruitment by releasing the Cse1 subunit. These findings are used to develop a model for the biophysical constraints governing off-target DNA binding. CHAMP provides a framework for high-throughput, quantitative analysis of protein-DNA interactions on synthetic and genomic DNA. PAPERCLIP.


Assuntos
Proteínas de Ligação a DNA/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ligação Proteica , Análise de Sequência de DNA/métodos , Sistemas CRISPR-Cas , Ensaio de Desvio de Mobilidade Eletroforética , Microscopia de Fluorescência , Motivos de Nucleotídeos
18.
Stem Cell Res Ther ; 8(1): 132, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28583172

RESUMO

BACKGROUND: Non-integrating episomal vectors have become an important tool for induced pluripotent stem cell reprogramming. The episomal vectors carrying the "Yamanaka reprogramming factors" (Oct4, Klf, Sox2, and L-Myc + Lin28) are critical tools for non-integrating reprogramming of cells to a pluripotent state. However, the reprogramming process remains highly stochastic, and is hampered by an inability to easily identify clones that carry the episomal vectors. METHODS: We modified the original set of vectors to express spectrally separable fluorescent proteins to allow for enrichment of transfected cells. The vectors were then tested against the standard original vectors for reprogramming efficiency and for the ability to enrich for stoichiometric ratios of factors. RESULTS: The reengineered vectors allow for cell sorting based on reprogramming factor expression. We show that these vectors can assist in tracking episomal expression in individual cells and can select the reprogramming factor dosage. CONCLUSIONS: Together, these modified vectors are a useful tool for understanding the reprogramming process and improving induced pluripotent stem cell isolation efficiency.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular/genética , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Células-Tronco Pluripotentes Induzidas/citologia , Plasmídeos/genética , Análise de Variância , Diferenciação Celular/genética , Linhagem Celular , Expressão Gênica , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Plasmídeos/metabolismo , Estatísticas não Paramétricas
19.
J Affect Disord ; 208: 284-290, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27794252

RESUMO

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) was approved in 2008 in the United States, and there are relatively few studies describing its use in regular clinical practice since approval. METHODS: From April 2011 to October 2014, ten sites within the National Network of Depression Centers (NNDC) provided data on 62 evaluable patients with a depressive episode. Treatment was determined naturalistically. Response was assessed by the Quick Inventory of Depressive Symptoms, Self-Report (QIDS-SR) as the primary outcome, and the Patient Health Questionnaire-9 (PHQ-9) and the clinician-rated Clinical Global Impression (CGI) as secondary depression measures. RESULTS: Enrolled patients exhibited significant treatment resistance, with 70.2% reporting more than 4 prior depressive episodes. Most patients received treatment with standard parameters (10Hz over the left dorsolateral prefrontal cortex), although 22.6% of the patients received 1 or 5Hz stimulation at some point. Over 6 weeks of treatment, response and remission rates were 29.4% and 5.9%, respectively, for the QIDS-SR; 39.2% and 15.7%, respectively, for the PHQ-9; and 50.9% and 17.9%, respectively, for the CGI. Moderator analyses revealed no effect of prior depressive episodes, history of ECT or gender, although early life stress predicted a better response to rTMS therapy. LIMITATIONS: The study was an open-label, registry trial, with relatively coarse clinical data, reflecting practice only in academic, depression-specialty centers. Because of the relatively small size and heterogeneity of the sample, type 2 errors are possible and positive findings are in need of replication. CONCLUSION: rTMS demonstrates effectiveness in clinical practice within the NNDC, although remission rates appear slightly lower in comparison with other recent naturalistic studies.


Assuntos
Transtorno Depressivo/terapia , Estimulação Magnética Transcraniana , Centros Médicos Acadêmicos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Análise de Regressão , Indução de Remissão , Autorrelato , Resultado do Tratamento
20.
PLoS Pathog ; 12(12): e1006066, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28027315

RESUMO

Schlafen11 (encoded by the SLFN11 gene) has been shown to inhibit the accumulation of HIV-1 proteins. We show that the SLFN11 gene is under positive selection in simian primates and is species-specific in its activity against HIV-1. The activity of human Schlafen11 is relatively weak compared to that of some other primate versions of this protein, with the versions encoded by chimpanzee, orangutan, gibbon, and marmoset being particularly potent inhibitors of HIV-1 protein production. Interestingly, we find that Schlafen11 is functional in the absence of infection and reduces protein production from certain non-viral (GFP) and even host (Vinculin and GAPDH) transcripts. This suggests that Schlafen11 may just generally block protein production from non-codon optimized transcripts. Because Schlafen11 is an interferon-stimulated gene with a broad ability to inhibit protein production from many host and viral transcripts, its role may be to create a general antiviral state in the cell. Interestingly, the strong inhibitors such as marmoset Schlafen11 consistently block protein production better than weak primate Schlafen11 proteins, regardless of the virus or host target being analyzed. Further, we show that the residues to which species-specific differences in Schlafen11 potency map are distinct from residues that have been targeted by positive selection. We speculate that the positive selection of SLFN11 could have been driven by a number of different factors, including interaction with one or more viral antagonists that have yet to be identified.


Assuntos
Evolução Molecular , Proteínas Nucleares/imunologia , Proteínas Virais/imunologia , Viroses/imunologia , Animais , Callithrix , Citometria de Fluxo , HIV-1/imunologia , Humanos , Hylobates , Immunoblotting , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Pan troglodytes , Reação em Cadeia da Polimerase , Pongo , Primatas , Seleção Genética , Especificidade da Espécie , Transfecção , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...