Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Med ; 130: 61-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17401164

RESUMO

One of the most time-consuming steps in the generation of adenoviral vectors is the construction of recombinant plasmids. This chapter describes a detailed method for the rapid construction of adenoviral vectors. The method described here uses homologous recombination machinery of Escherichia coli BJ5183 to construct plasmids used in generation of adenoviral vectors. With this method, no ligation steps are involved in generating the plasmids, and any region of the adenoviral genome can be easily modified. Briefly, the full-length adenoviral genome flanked by unique restriction enzyme sites is first cloned into a bacterial plasmid. Next, the region of the viral genome to be modified is subcloned into a bacterial shuttle plasmid, and the desired changes are introduced by molecular biology techniques. The modified viral DNA fragment is gel-purified and cotransformed with the full-length plasmid, linearized in the targeted region, into BJ5183 cells. Homologous recombination in E. coli generates plasmids containing the modified adenoviral genome. Recombinant virus is generated following release of the viral DNA sequences from the plasmid backbone and transfection into a producer cell line. With this method, homogeneous recombinant adenoviruses can be obtained without plaque purification.


Assuntos
Adenoviridae/genética , Escherichia coli/genética , Recombinação Genética , DNA Viral/genética , Vetores Genéticos , Genoma Viral , Indicadores e Reagentes , Plasmídeos , Transfecção/métodos
2.
Oncogene ; 24(52): 7763-74, 2005 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-16299536

RESUMO

Changes initiated at the cellular and systemic levels as a result of viral infection or neoplastic transformation share significant overlap. Therefore, the use of replicating viruses to treat tumors has long been postulated as a promising avenue for oncolytic therapy. Over the last 10 years, transcriptionally regulated adenoviruses have become a popular platform for the development of such oncolytic viruses. Placement of heterologous promoters in front of key adenoviral transcription units to achieve tumor- or tissue-specific viral replication is well documented. Various derivatives of this general strategy have led to considerable insight into its limitations, pitfalls, and potential. Although a general process can be described by which to develop transcriptionally regulated adenoviruses, it is apparent that few set rules can yet be defined as to what constitutes a safe, stable, and therapeutically effective vector. Clinical experiences to date suggest the short-term potential for this class of therapeutics lies in combination therapy regimens. Such lessons from the clinic suggest the next generation of transcriptionally regulated oncolytic adenoviruses take advantage of the ability of the platform to carry transgenes in order to deliver a multimodal therapy from a single agent. Beyond this 'arming' of the vectors lies the detargeting, retargeting, and coating of adenoviruses to improve the delivery of the agent to the treatment site(s). As a therapeutic platform, transcriptionally regulated adenoviruses are at an early stage of development with considerable opportunities for advancement.


Assuntos
Adenoviridae/genética , Transformação Celular Neoplásica , Terapia Viral Oncolítica , Transcrição Gênica , Replicação Viral , Adenoviridae/patogenicidade , Terapia Combinada , Terapia Genética , Vetores Genéticos , Humanos , Neoplasias/terapia , Neoplasias/virologia , Vírus Oncolíticos , Regiões Promotoras Genéticas , Transgenes
3.
Cancer Res ; 65(12): 5003-8, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15958540

RESUMO

Hepatocellular carcinoma is the fifth most common cancer worldwide, and there is no effective therapy for unresectable disease. We have developed a targeted systemic therapy for hepatocellular carcinoma. The gene for a foreign enzyme is selectively expressed in the tumor cells and a nontoxic prodrug is then given, which is activated to a potent cytotoxic drug by the tumor-localized enzyme. This approach is termed gene-directed enzyme prodrug therapy (GDEPT). Adenoviruses have been used to target cancer cells, have an intrinsic tropism for liver, and are efficient gene vectors. Oncolytic adenoviruses produce clinical benefits, particularly in combination with conventional anticancer agents and are well tolerated. We rationalized that such adenoviruses, if their expression were restricted to telomerase-positive cancer cells, would make excellent gene vectors for GDEPT therapy of hepatocellular carcinoma. Here we use an oncolytic adenovirus to deliver the prodrug-activating enzyme carboxypeptidase G2 (CPG2) to tumors in a single systemic administration. The adenovirus replicated and produced high levels of CPG2 in two different hepatocellular carcinoma xenografts (Hep3B and HepG2) but not other tissues. GDEPT enhanced the adenovirus-alone therapy to elicit tumor regressions in the hepatocellular carcinoma models. This is the first time that CPG2 has been targeted and expressed intracellularly to effect significant therapy, showing that the combined approach holds enormous potential as a tumor-selective therapy for the systemic treatment of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/terapia , Terapia Genética/métodos , Neoplasias Hepáticas/terapia , Compostos de Mostarda Nitrogenada/farmacologia , Pró-Fármacos/farmacocinética , gama-Glutamil Hidrolase/genética , Adenoviridae/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Camundongos , Camundongos Nus , Compostos de Mostarda Nitrogenada/farmacocinética , Pró-Fármacos/farmacologia , Regiões Promotoras Genéticas , Telomerase/genética , Ensaios Antitumorais Modelo de Xenoenxerto , gama-Glutamil Hidrolase/biossíntese , gama-Glutamil Hidrolase/metabolismo
4.
Cancer Gene Ther ; 11(8): 555-69, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15232601

RESUMO

A potentially promising treatment of metastatic cancer is the systemic delivery of oncolytic adenoviruses. This requires engineering viruses which selectively replicate in tumors. We have constructed such an oncolytic adenovirus, OAS403, in which two early region genes are under the control of tumor-selective promoters that play a role in two key pathways involved in tumorigenesis. The early region E1A is controlled by the promoter for the E2F-1 gene, a transcription factor that primarily upregulates genes for cell growth. The E4 region is under control of the promoter for human telomerase reverse transcriptase, a gene upregulated in most cancer cells. OAS403 was evaluated in vitro on a panel of human cells and found to elicit tumor-selective cell killing. Also, OAS403 was less toxic in human hepatocyte cultures, as well as in vivo when compared to an oncolytic virus that lacked selective E4 control. A single intravenous injection of 3 x 10(12) vp/kg in a Hep3B xenograft mouse tumor model led to significant antitumor efficacy. Additionally, systemic administration in a pre-established LNCaP prostate tumor model resulted in over 80% complete tumor regressions at a tolerable dose. Vector genome copy number was measured in tumors and livers at various times following tail vein injection and showed a selective time-dependent increase in tumors but not livers over 29 days. Furthermore, efficacy was significantly improved when OAS403 treatment was combined with doxorubicin. This virus holds promise for the treatment of a broad range of human cancers including metastatic disease.


Assuntos
Adenoviridae/genética , Neoplasias/terapia , Adenoviridae/metabolismo , Animais , Proteínas de Ligação a DNA , Doxorrubicina/uso terapêutico , Vetores Genéticos/administração & dosagem , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Injeções , Camundongos , Camundongos SCID , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Telomerase/genética , Telomerase/metabolismo , Replicação Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Biol Chem ; 279(28): 28903-10, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15102836

RESUMO

Functional N-methyl-d-aspartic acid (NMDA) receptors are formed from the assembly of NR1 and NR2 subunits. When expressed alone, the major NR1 splice variant and the NR2 subunits are retained in the endoplasmic reticulum (ER), reflecting a quality control mechanism found in many complex multisubunit proteins to ensure that only fully assembled and properly folded complexes reach the cell surface. Recent studies have identified an RRR motif in the C terminus of the NR1 subunit, which controls the ER retention of the unassembled subunit. Here we investigated the mechanisms controlling the ER retention of the NR2 subunit and the export of the assembled complex from the ER. We found that Tac chimeras of the C terminus of the NR2B subunit show that an ER retention signal is also present in the NR2B subunit. In assembled complexes, ER retention signals on the individual subunits must be overcome to allow the complex to leave the ER. One common mechanism involves mutual masking of the signals on the individual subunits. Our data do not support such a mechanism for regulating the release of assembled NMDA receptors from the ER. We found that the motif, HLFY, immediately following transmembrane domain 4 of the NR2 subunit, is required for the assembled complex to exit from the ER. Mutation of this motif allowed the assembly of NR1 and NR2 subunits into a complex that was functional, based on MK-801 binding, but it is retained in the ER. These results are consistent with HLFY functioning as a signal that is necessary for the release of the assembled functional NMDA receptor complex from the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Sinais Direcionadores de Proteínas , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Maleato de Dizocilpina/metabolismo , Antagonistas de Aminoácidos Excitatórios/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Transporte Proteico/fisiologia , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
J Biol Chem ; 279(15): 14703-12, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-14732708

RESUMO

A c-Myc epitope-tagged N-methyl-D-aspartate receptor NR1-2a subunit was generated, NR1-2a(c-Myc), where the tag was inserted after amino acid 81. NR1-2a(c-Myc) /NR2A receptors when expressed in mammalian cells are not trafficked to the cell surface nor do they yield cell cytotoxicity post-transfection. NR1-2a(c-Myc) was, however, shown to assemble with NR2A subunits by immunoprecipitation and [(3)H]MK801 radioligand binding assays. Immunoblots of cells co-transfected with wild-type NR1-2a/NR2A subunits yielded two NR1-2a immunoreactive species with molecular masses of 115 and 226 kDa. Two-dimensional electrophoresis under non-reducing and reducing conditions revealed that the 226-kDa band contained disulfide-linked NR1-2a subunits. Only the 115-kDa NR1-2a species was detected for NR1-2a(c-Myc)/NR2A. The c-Myc epitope is inserted adjacent to cysteine 79 of the NR1-2a subunit; therefore, it is possible that the tag may prevent the formation of NR1 disulfide bridges. A series of cysteine --> alanine NR1-2a mutants was generated, and the NR1-2a mutants were co-expressed with NR2A or NR2B subunits in mammalian cells and characterized with respect to cell surface expression, cell cytotoxicity post-transfection, co-association by immunoprecipitation, and immunoblotting following SDS-PAGE under both reducing and non-reducing conditions. When co-expressed with NR2A in mammalian cells, NR1-2a(C79A)/NR2A displayed similar properties to NR1-2a(c-Myc)/NR2A in that the 226-kDa NR1 immunoreactive species was not detectable, and trafficking to the cell surface was impaired compared with wild-type NR1/NR2 receptors. These results provide the first biochemical evidence for the formation of NR1-NR1 intersubunit disulfide-linked homodimers involving cysteine 79. They suggest that disulfide bridging and structural integrity within the NR1 N-terminal domain is requisite for cell surface N-methyl-D-aspartate receptor expression.


Assuntos
Membrana Celular/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/química , Animais , Linhagem Celular , Dimerização , Dissulfetos , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Epitopos , Humanos , Immunoblotting , Mutação , Testes de Precipitina , Prosencéfalo/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ensaio Radioligante , Ratos , Frações Subcelulares , Transfecção
7.
Mol Ther ; 8(3): 412-24, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12946314

RESUMO

Oncolytic replication-selective adenoviruses constitute a rapidly expanding experimental approach to the treatment of cancer. However, due to the lack of an immunocompetent and replication-competent efficacy model, the role of the host immune response and viral E3 immunoregulatory genes remained unknown. We screened nine murine carcinoma lines for adenovirus (Ad5) uptake, gene expression, replication, and cytopathic effects. In seven of these murine cell lines the infectability and cytopathic effects were similar to those seen with human carcinoma lines. Surprisingly, productive viral replication was demonstrated in several lines; replication varied from levels similar to those for some human carcinoma lines (e.g., CMT-64) to very low levels. Seven of these lines were grown as subcutaneous xenografts in immunocompetent mice and were subsequently injected directly with Ad5, saline, or a replication-deficient control adenovirus particle to assess intratumoral viral gene expression, replication, and antitumoral effects. E1A, coat protein expression, and cytopathic effects were documented in five xenografts; Ad5 replication was demonstrated in CMT-64 and JC xenografts. Ad5 demonstrated significant efficacy compared to saline and nonreplicating control Ad particles in both replication-permissive xenografts (CMT-64, JC) and poorly permissive tumors (CMT-93); efficacy against CMT-93 tumors was significantly greater in immunocompetent mice compared to athymic mice. These murine tumor xenograft models have potential for elucidating viral and host immune mechanisms involved in oncolytic adenovirus antitumoral effects.


Assuntos
Adenoviridae , Carcinoma/imunologia , Modelos Animais de Doenças , Vetores Genéticos , Animais , Carcinoma/cirurgia , Carcinoma/virologia , Camundongos , Fatores de Tempo , Transplante Heterólogo
8.
Mol Ther ; 7(4): 526-34, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12727116

RESUMO

We have developed a novel therapeutic gene delivery system for oncolytic adenoviruses that takes advantage of the endogenous gene expression machinery (promoters, splicing, polyadenylation signals) of the E3 transcription unit for gene delivery. In this work, we use two sites in the E3 region (6.7 K/gp19K and ADP sites) to demonstrate that (1) multiple therapeutic genes (MCP-3, TNFalpha) can be expressed from a single replicating Ad, (2) timing of expression of these therapeutic genes mimics that of the E3 region genes they replaced, (3) expression of the remaining genes in the complex E3 transcription unit is maintained, and (4) the multigene-expressing virus retains replication competence and ability to induce classical adenovirus cytopathic effects that parallel those of the parental adenovirus (ONYX-320). This system conserves the DNA packaging capacity of the size-constrained viral genome for therapeutic genes and can potentially be used to link therapeutic transgene expression to tumor-restricted viral replication. Potential clinical implications are discussed.


Assuntos
Adenoviridae/genética , Citocinas , Regulação Viral da Expressão Gênica , Vetores Genéticos , Regiões Promotoras Genéticas , Adenoviridae/metabolismo , Proteínas E3 de Adenovirus/genética , Proteínas E3 de Adenovirus/metabolismo , Quimiocina CCL7 , Humanos , Proteínas Quimioatraentes de Monócitos/genética , Proteínas Quimioatraentes de Monócitos/metabolismo , Transgenes , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Replicação Viral
9.
Cancer Res ; 63(7): 1490-9, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12670895

RESUMO

The use of oncolytic adenoviruses as a cancer therapeutic is dependent on the lytic properties of the viral life cycle, and the molecular differences between tumor cells and nontumor cells. One strategy for achieving safe and efficacious adenoviral therapies is to control expression of viral early gene(s) required for replication with tumor-selective promoter(s), particularly those active in a broad range of cancer cells. The retinoblastoma tumor suppressor protein (Rb) pathway is dysregulated in a majority of human cancers. The human E2F-1 promoter has been shown to be selectively activated/derepressed in tumor cells with a defect in the Rb pathway. Ar6pAE2fE3F and Ar6pAE2fF are oncolytic adenoviral vectors (with and without the viral E3 region, respectively) that use the tumor-selective E2F-1 promoter to limit expression of the viral E1A transcription unit, and, thus, replication, to tumor cells. We demonstrate that the antitumor activity of Ar6pAE2fF in vitro and in vivo is dependent on the E2F-1 promoter driving E1A expression in Rb pathway-defective cells, and furthermore, that its oncolytic activity is enhanced by viral replication. Selective oncolysis by Ar6pAE2fF was dependent on the presence of functional E2F binding sites in the E2F-1 promoter, thus linking antitumor viral activity to the Rb pathway. Potent antitumor efficacy was demonstrated with Ar6pAE2fF and Ar6pAE2fE3F in a xenograft model following intratumoral administration. Ar6pAE2fF and Ar6pAE2fE3F were compared with Addl1520, which is reported to be molecularly identical to an E1B-55K deleted vector currently in clinical trials. These vectors were compared in in vitro cytotoxicity and virus production assays, after systemic delivery in an in vivo E1A-related hepatotoxicity model, and in a mouse xenograft tumor model after intratumoral administration. Our results support the use of oncolytic adenoviruses using tumor-selective promoter(s) that are activated or derepressed in tumor cells by virtue of a particular defective pathway, such as the Rb pathway.


Assuntos
Adenoviridae/fisiologia , Proteínas E1A de Adenovirus/biossíntese , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Neoplasias/virologia , Proteína do Retinoblastoma/fisiologia , Fatores de Transcrição/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas E1A de Adenovirus/genética , Animais , Sítios de Ligação , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/virologia , Efeito Citopatogênico Viral/fisiologia , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Vetores Genéticos/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/virologia , Masculino , Camundongos , Camundongos SCID , Neoplasias/genética , Neoplasias/terapia , Regiões Promotoras Genéticas , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Virol ; 77(4): 2640-50, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12552003

RESUMO

Mutants of human adenovirus 5 (Ad5) with enhanced oncolytic activity were isolated by using a procedure termed bioselection. Two mutants, ONYX-201 and ONYX-203, were plaque purified from a pool of randomly mutagenized Ad5 that was repeatedly passaged in the human colorectal cancer cell line HT29, and they were subsequently characterized. ONYX-201 and ONYX-203 replicated more rapidly in HT29 cells than wild-type Ad5, and they lysed HT29 cells up to 1,000-fold more efficiently. The difference was most profound when cells were infected at a relatively low multiplicity of infection, presumably due to the compounding effects of multiple rounds of infection. This enhanced cytolytic activity was observed not only in HT29 cells but also in many other human cancer cell lines tested. In contrast, the cytotoxicity of the bioselected mutants in a number of normal primary human cells was similar to that of wild-type Ad5, thus enhancing the therapeutic index (cytotoxicity in tumor cells versus that in normal cells) of these oncolytic agents. Both ONYX-201 and -203 contain seven single-base-pair mutations when compared with Ad5, four of which were common between ONYX-201 and -203. The mutation at nucleotide 8350, shared by both mutant viruses, was shown to be essential for the observed phenotypes. This mutation was mapped to the i-leader region of the major late transcription unit, resulting in the truncation of 21 amino acids from the C terminus of the i-leader protein. This work demonstrates that bioselection is a powerful tool for developing novel tumor-selective oncolytic viruses. Other potential applications of this technology are discussed.


Assuntos
Adenovírus Humanos/genética , Adenovírus Humanos/patogenicidade , Seleção Genética , Adenovírus Humanos/fisiologia , Efeito Citopatogênico Viral , Humanos , Mutagênese , Inoculações Seriadas , Células Tumorais Cultivadas , Virologia/métodos , Replicação Viral
11.
J Neurosci ; 22(20): 8902-10, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12388597

RESUMO

The effect of increasing the expression of NMDA subunits in cerebellar granule cells (CGCs) by transfection was studied to determine how the availability of various NMDA subunits controls both the total pool of functional receptors and the synaptic pool. Overexpression of either NR2A or NR2B, but not splice variants of NR1, by transfection caused a significant increase in the total number of functional NMDA receptors and in surface NR1 subunit cluster density in CGCs in primary culture. These data solidify the central role of NR2 subunit availability in determining the number of cell surface receptors. Overexpression of either NR2A or NR2B significantly altered the deactivation kinetics of NMDA-mediated miniature EPSCs (NMDA-mEPSCs). However, there was no significant effect of NR2 subunit overexpression on the mEPSC amplitude or single-channel conductance. NR2 subunit overexpression did not change the rate of block by MK-801 of NMDA-mediated currents in excised patches from CGCs, indicating that subunit composition does not regulate peak open probability of the channel in CGCs. With the overexpression of a mutant of NR2B lacking the PDZ binding domain, there was an increase in the total number of NMDA receptors without a change in mEPSC kinetics. Therefore, the entry of NMDA receptors into the synapse requires a PDZ binding domain and is limited by means other than receptor subunit availability.


Assuntos
Subunidades Proteicas , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Cerebelo/citologia , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Fluorescência Verde , Imuno-Histoquímica , Proteínas Luminescentes/genética , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transmissão Sináptica/fisiologia , Transfecção
12.
Lancet Oncol ; 3(1): 17-26, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11905600

RESUMO

There is a clear need for new, selective, cancer treatments that do not cause the cross-resistance which occurs with currently available chemotherapeutic agents. Gene therapy is a promising approach, but to date, it has shown limited effectiveness in clinical trials because of insufficient gene transduction. Many investigators are now revisiting the 'old' idea of using tumour-specific, replication-selective viruses or bacteria to treat cancer. These agents can be directly oncolytic, but can also be used to simultaneously express therapeutic genes in target cells or induce tumour-specific, cell-mediated immunity. We discuss the promise of this rapidly evolving field and examine the potential barriers to its success.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Neoplasias/terapia , Adenoviridae/genética , Ensaios Clínicos como Assunto , Feminino , Previsões , Humanos , Masculino , Poliovirus/genética , Sensibilidade e Especificidade , Resultado do Tratamento , Vaccinia virus/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...