Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Surg Neurol Int ; 2: 134, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22059129

RESUMO

BACKGROUND: Based on numerous reports citing high sensitivity and specificity of non-invasive imaging [e.g. computed tomography angiography (CTA) or magnetic resonance angiography (MRA)] in the detection of intracranial aneurysms, it has become increasingly difficult to justify the role of conventional angiography [digital subtraction angiography (DSA)] for diagnostic purposes. The current literature, however, largely fails to demonstrate the practical application of these technologies within the context of a "real-world" neurosurgical practice. We sought to determine the proportion of patients for whom the additional information gleaned from 3D rotational DSA (3DRA) led to a change in treatment. METHODS: We analyzed the medical records of the last 361 consecutive patients referred to a neurosurgeon at our institution for evaluation of "possible intracranial aneurysm" or subarachnoid hemorrhage (SAH). Only those who underwent non-invasive vascular imaging within 3 months prior to DSA were included in the study. For asymptomatic patients without a history of SAH, aneurysms less than 5 mm were followed conservatively. Treatment was advocated for patients with unruptured, non-cavernous aneurysms measuring 5 mm or larger and for any non-cavernous aneurysm in the setting of acute SAH. RESULTS: For those who underwent CTA or MRA, the treatment plan was changed in 17/90 (18.9%) and 22/73 (30.1%), respectively, based on subsequent information gleaned from DSA. Several reasons exist for the change in the treatment plan, including size and location discrepancies (e.g. cavernous versus supraclinoid), or detection of a benign vascular variant rather than a true aneurysm. CONCLUSIONS: In a "real-world" analysis of intracranial aneurysms, DSA continues to play an important role in determining the optimal management strategy.

2.
Neuroimaging Clin N Am ; 20(3): 367-78, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20708552

RESUMO

Treatment of glioblastoma multiforme remains a major challenge despite advances in standard therapy, including surgery, radiation, and chemotherapy. The field of nanomedicine is expected to have a major impact on the treatment and management of brain tumors. Over the past decade, significant efforts have been made in using nanoparticles for diagnosis and treatment of brain tumors. One class of nanoparticles, liposomes, have received considerable attention for use as nanocarriers for delivery of therapeutics and contrast agents. The purpose of this article is to present the advances in the design and functional characteristics of liposomes for applications in brain tumor imaging.


Assuntos
Neoplasias Encefálicas/diagnóstico , Meios de Contraste , Glioblastoma/diagnóstico , Aumento da Imagem/métodos , Lipossomos , Imageamento por Ressonância Magnética/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...