Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 176(8): 786-94, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17626911

RESUMO

RATIONALE: Mechanical ventilation with large tidal volumes causes ventilator-induced lung injury in animal models. Little direct evidence exists regarding the deformation of airways in vivo during mechanical ventilation, or in the presence of positive end-expiratory pressure (PEEP). OBJECTIVES: To measure airway strain and to estimate airway wall tension during mechanical ventilation in an intact animal model. METHODS: Sprague-Dawley rats were anesthetized and mechanically ventilated with tidal volumes of 6, 12, and 25 cm(3)/kg with and without 10-cm H(2)O PEEP. Real-time tantalum bronchograms were obtained for each condition, using microfocal X-ray imaging. Images were used to calculate circumferential and longitudinal airway strains, and on the basis of a simplified mathematical model we estimated airway wall tensions. MEASUREMENTS AND MAIN RESULTS: Circumferential and longitudinal airway strains increased with increasing tidal volume. Levels of mechanical strain were heterogeneous throughout the bronchial tree. Circumferential strains were higher in smaller airways (less than 800 mum). Airway size did not influence longitudinal strain. When PEEP was applied, wall tensions increased more rapidly than did strain levels, suggesting that a "strain limit" had been reached. Airway collapse was not observed under any experimental condition. CONCLUSIONS: Mechanical ventilation results in significant airway mechanical strain that is heterogeneously distributed in the uninjured lung. The magnitude of circumferential but not axial strain varies with airway diameter. Airways exhibit a "strain limit" above which an abrupt dramatic rise in wall tension is observed.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Respiração Artificial , Animais , Broncografia , Modelos Animais , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Volume de Ventilação Pulmonar/fisiologia
2.
Acad Radiol ; 11(9): 961-70, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15350577

RESUMO

RATIONALE AND OBJECTIVES: Micro computed tomography is an important tool for small animal imaging. On many occasions, it is desirable to image lungs in a live instead of postmortem small animal to perform a pulmonary physiology study. Because the lungs are moving, gating with respect to the ventilatory phase has to be performed to reduce motion artifacts. Precapture ventilation gating may be difficult to achieve in some situations, which motivates us to propose and implement a simple postacquisition gating method. MATERIALS AND METHODS: Rats were used as the subjects in this study. A sequence of low-dose projection images were acquired at 30 frames per second for each view angle. During each capture sequence the rat undergoes multiple ventilation cycles. Using the sequence of projection images, an automated region of interest algorithm, based on integrated grayscale intensity, tracts the ventilatory phase of the lungs. In the processing of an image sequence, multiple projection images are identified at a particular phase and averaged to improve the signal-to-noise ratio. The resulting averaged projection images from different view angles are input to a Feldkamp cone-beam algorithm reconstruction algorithm to obtain isotropic image volumes. RESULTS: Reconstructions with reduced movement artifacts are obtained. In the gated reconstruction, registration of the bone is much better, the edge of the lung is clearly defined, and structures within the lung parenchyma are better resolved. Also, different phases of a breathing cycle can be reconstructed from one single tomographic scan by the proposed gating method. CONCLUSION: A postacquisition gating method using the phase information encoded in the 2-dimensional cone beam projections is proposed. This method is simple to implement and does not require additional experimental set-up to monitor the respiration. It may find applications in lung tumor detection, dynamic pulmonary physiology studies, and the respiratory systems modeling. Minimal motion artifact data sets improve qualitative and quantitative analysis techniques that are useful in physiologic studies of pulmonary structure and function.


Assuntos
Inteligência Artificial , Pulmão/diagnóstico por imagem , Respiração , Tomografia Computadorizada por Raios X , Animais , Processamento de Imagem Assistida por Computador , Modelos Animais , Ratos , Ratos Sprague-Dawley , Respiração Artificial
3.
J Appl Physiol (1985) ; 97(1): 45-56, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14990558

RESUMO

Liquid can be instilled into the pulmonary airways during medical procedures such as surfactant replacement therapy, partial liquid ventilation, and pulmonary drug delivery. For all cases, understanding the dynamics of liquid distribution in the lung will increase the efficacy of treatment. A recently developed imaging technique for the study of real-time liquid transport dynamics in the pulmonary airways was used to investigate the effect of respiratory rate on the distribution of an instilled liquid, surfactant, in a rat lung. Twelve excised rat lungs were suspended vertically, and a single bolus (0.05 ml) of exogenous surfactant (Survanta, Ross Laboratories, Columbus, OH) mixed with radiopaque tracer was instilled as a plug into the trachea. The lungs were ventilated with a 4-ml tidal volume for 20 breaths at one of two respiratory rates: 20 or 60 breaths/min. The motion of radiodense surfactant was imaged at 30 frames/s with a microfocal X-ray source and an image intensifier. Dynamics of surfactant distribution were quantified for each image by use of distribution statistics and a homogeneity index. We found that the liquid distribution depended on the time to liquid plug rupture, which depends on ventilation rate. At 20 breaths/min, liquid was localized in the gravity-dependent region of the lung. At 60 breaths/min, the liquid coated the airways, providing a more vertically uniform liquid distribution.


Assuntos
Ventilação Líquida , Pulmão/metabolismo , Surfactantes Pulmonares/metabolismo , Mecânica Respiratória/fisiologia , Algoritmos , Animais , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Pulmão/diagnóstico por imagem , Radiografia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...